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On Initial-Periodic Type Problems
for Three-Dimensional Linear Hyperbolic System

Najma Alarbi
Florida Institute of Technology, Melbourne, USA

E-mail: nalarbi2015@my.fit.edu

In the rectangular box Ω = [0, ω1]× [0, ω2]× [0, ω3] for the linear hyperbolic system

u(1) =
∑
α<1

Pα(x)u
(α) + q(x) (1)

consider the initial-periodic conditions

u(0, x2, x3) = φ1(x2, x3), u(1,0,0)(x1, 0, x3) = φ
(1,0)
2 (x1, x3)

u(x1, x2, x3 + ω3) = u(x1, x2, x3)
(2)

and
u(0, x2, x3) = φ(x2, x3),

u(x1, x2 + ω2, x3) = u(x1, x2, x3), u(x1, x2, x3 + ω3) = u(x1, x2, x3)
(3)

Here x = (x1, x2, x3), 1 = (1, 1, 1) and α = (α1, α2, α3) are multi-indices,

u(α)(x) =
∂α1+α2+α3u(x)

∂xα1
1 ∂xα2

2 ∂xα3
3

,

Pα ∈ C(Ω;Rn×n) (α < 1), q ∈ C(Ω;Rn), φ1 ∈ C1,1(Ω23), φ2 ∈ C1,1(Ω13), Ω23 = [0, ω2] × [0, ω3]
and Ω13 = [0, ω1]× [0, ω3].

Throughout the paper the following g notations will be used:
0 = (0, 0, 0), 1 = (1, 1, 1).
α = (α1, α2, α3) < β = (β1, β2, β3) ⇐⇒ αi ≤ βi (i = 1, 2, 3) and α ̸= β.
α = (α1, α2, α3) ≤ β = (β1, β2, β3) ⇐⇒ α < β, or α = β.
∥α∥ = |α1|+ |α2|+ |α3|.
Let m = (m1,m2,m3) be a multi-index. By Cm(Ω;Rn) denote the Banach space of vector

functions u : Ω → Rn, having continuous partial derivatives u(α) (α ≤ m), endowed with the norm

∥u∥Cm(Ω) =
∑
α≤m

∥u(α)∥C(Ω).

By a solution of problem (1), (2) (problem (1), (3)) we understand a classical solution, i.e., a
vector-function u ∈ C1(Ω;Rn) satisfying system (1) and boundary conditions (2) (system (1) and
boundary conditions (3)) everywhere in Ω.

Along with system (1) consider its corresponding homogeneous system

u(1) =
∑
α<1

Pα(x)u
(α), (10)
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and the following boundary value problems

v(0,0,1) = P110(x1, x2, x3)v,

v(x1, x2, x3 + ω3) = v(x1, x2, x3),
(4)

v(0,1,0) = P101(x1, x2, x3)v,

v(x1, x2 + ω2, x3) = v(x1, x2, x3),
(5)

and
v(0,1,1) = P110(x1, x2, x3)v

(0,1,0) + P101(x1, x2, x3)v
(0,0,1) + P100v,

v(x1, x2 + ω2, x3) = v(x1, x2, x3), v(x1, x2, x3 + ω3) = v(x1, x2, x3).
(6)

Problem (4) is called an σ-associated problem of problem (1), (2).
Problems (4), (5) and (6) are called σ-associated problems of problem (1), (3).

Notice that:

Problem (4) is a one-dimensional periodic problem with respect to x3 variable, depending on
two parameters x1 and x2;

Problem (5) is a one-dimensional periodic problem with respect to x2 variable, depending on
two parameters x1 and x3;

Problem (6) is a two-dimensional periodic problem with respect to x2 and x3 variables,
depending the parameter x1.

Theorem 1. Let problem (4) have only the trivial solution for every (x1, x2) ∈ [0, ω1] × [0, ω2].
Then problem (1), (2) has a unique solution u admitting the estimate

∥u∥C1(Ω) ≤ M
(
∥φ1∥C1,1(Ω23) + ∥φ2∥C1,1(Ω13) + ∥q∥C(Ω)

)
, (7)

where M is a positive number independent of φ1, φ2 and q.

Definition 1. Problem (1), (2) is called well-posed, if for every φ1 ∈ C1,1(Ω23;Rn), φ2 ∈
C1,1(Ω13;Rn) and q ∈ C(Ω;Rn), it is uniquely solvable and its solution admits estimate (7), where
M is a positive number independent of φ1, φ2 and q.

Theorem 2. Let problem (1), (2) be well-posed. Then problem (4) has only the trivial solution for
every (x1, x2) ∈ [0, ω1]× [0, ω2].

Corollary 1. Let P110(x1, x2, x3) = P110(x1, x2). Then problem (1), (2) is well-posed if and only if

det
(
I − exp(ω3P110(x1x2))

)
̸= 0 for (x1, x2) ∈ Ω12.

Corollary 2. Let

P̂110(x1, x2, x3) =
1

2

(
P110(x1, x2, x3) + P T

110(x1, x2, x3)
)
,

and let there exist σ ∈ {−1, 1} (i = 1, 2) such that

σ

ω3∫
0

P̂110(x1, x2, s) ds is positive definite for (x1, x2) ∈ Ω12.

Then problem (1), (2) is well-posed.
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Consider the system
u(1) = P (x)u+ q(x). (8)

By Theorem 2, problem (8), (2) is ill-posed, since its σ-associated problem

v(0,0,1) = 0, v(x1, x2, x3 + ω3) = v(x1, x2, x3)

has a nontrivial solution v(x3) ≡ 1 for every (x1, x2) ∈ [0, ω1] × [0, ω2]. Being ill-posed, problem
(8), (2) still can be uniquely solvable.

Theorem 3. Let P ∈ C1,1,0(Ω;Rn×n), q ∈ C1,1,0(Ω;Rn), φ1 ∈ C2,1(Ω23), φ2 ∈ C2,1(Ω13), and let

det

( ω3∫
0

P (x1, x2, s) ds

)
̸= 0 for (x1, x2) ∈ [0, ω1]× [0, ω2].

Then problem (8), (2) has a unique solution u admitting the estimate

∥u∥C1(Ω) ≤ M
(
∥φ1∥C2,1(Ω23) + ∥φ2∥C2,1(Ω13) + ∥q∥C1,1,0(Ω)

)
,

where M is a positive number independent of φ1, φ2 and q, if and only if

ω3∫
0

(
P (0, x2, s)φ1(x2, s) + q(0, x2, s)

)
ds = 0 for x2 ∈ [0, ω2]

and
ω3∫
0

(
P (x1, 0, s)φ2(x1, s) + q(x1, 0, s)

)
ds = 0 for x1 ∈ [0, ω1].

Theorem 4. Let the following conditions hold:

(F1) Problem (4) has only the trivial solution for every (x1, x2) ∈ Ω12;

(F2) Problem (5) has only the trivial solution for every (x1, x3) ∈ Ω13;

(F3) Problem (6) has only the trivial solution for every x1 ∈ [0, ω1].

Then problem (1), (3) has a unique solution u admitting the estimate

∥u∥C1(Ω) ≤ M
(
∥φ∥C1,1(Ω23) + ∥q∥C(Ω)

)
, (9)

where M is a positive number independent of φ and q.

Definition 2. Problem (1), (3) is called well-posed, if for every φ ∈ C1,1(Ω23;Rn) and q ∈ C(Ω;Rn),
it is uniquely solvable and its solution admits estimate (9), where M is a positive number indepen-
dent of φ and q.

Theorem 5. Let problem (1), (3) be well-posed. Then conditions (F1), (F2) and (F3) hold.
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Corollary 3. Let

P110(x1, x2, x3) ≡ P110(x1),

P101(x1, x2, x3) ≡ P101(x1),

P100(x1, x2, x3) ≡ P100(x1),

and let

det
(
I − exp(ω3P110(x1))

)
̸= 0 for x1 ∈ [0, ω1],

det
(
I − exp(ω2P101(x1))

)
̸= 0 for x1 ∈ [0, ω1].

Then problem (1), (3) is well-posed if and only if

det
(
P100(x1) + i

2π

ω3
mP110(x1) + i

2π

ω2
kP101(x1) + mk I

)
̸= 0 for x1 ∈ [0, ω1], m, k ∈ Z.

Consider the equation
u(1) =

∑
α<1

pα(x1, x2)u
(α) + q(x). (10)

Corollary 4. Let

p100(x1, x2) p110(x1, x2) p101(x1, x2) < 0 for (x1, x2) ∈ Ω12.

Then problem (10), (2) is well-posed.
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On Initial-Boundary Value Problems
for Quasilinear Hyperbolic Systems of Second Order

Maram M. Alrumayh
Florida Institute of Technology, Melbourne, USA

E-mail: malsalem2017@my.fit.edu

In the rectangle Ω = [0, a]× [0, b] consider the nonlinear hyperbolic system

uxy = f(x, y, ux, uy, u), (1)
u(0, y) = φ(y), h(ux(x, · ))(x) = ψ′(x), (2)

where f : Ω × R3n → Rn is a continuous vector function that is continuously differentiable with
respect to the first 2n phase variables, φ ∈ C1([0, b];Rn), ψ ∈ C1([0, a];Rn), and h : C([0, b];Rn) →
C([0, a];Rn) is a bounded linear operator.

Let v = (v1, . . . , vn), w = (w1, . . . , wn) and z = (z1, . . . , zn). For a function f(x, y, v, w, u) that
is continuously differentiable with respect to v, w and u, set:

F1(x, y, v, w, z) =
∂f(x, y, v, w, z)

∂v
, F2(x, y, v, w, z) =

∂f(x, y, v, w, z)

∂w
,

F0(x, y, v, w, z) =
∂f(x, y, v, w, z)

∂z
,

Pj [u](x, y) = Fj

(
x, y, ux(x, y), uy(x, y), u(x, y)

)
(j = 0, 1, 2).

C1,1(Ω;Rn) is the Banach space of continuous vector functions u : Ω → Rn, having continuous
partial derivatives ux, uy, uxy, endowed with the norm

∥u∥C1,1 = ∥u∥C + ∥ux∥C + ∥uy∥C + ∥uxy∥C .

C1(Ω;Rn) is the Banach space of continuous vector functions u : Ω → Rn, having continuous
partial derivatives ux, uy, endowed with the norm

∥u∥C1,1 = ∥u∥C + ∥ux∥C + ∥uy∥C .

If u0 ∈ C(Ω : Rn) and r > 0, then

B(u0; r) =
{
u ∈ C(Ω : Rn) : ∥u− u0∥ ≤ r

}
.

If u0 ∈ C1(Ω : Rn) and r > 0, then

B1(u0; r) =
{
u ∈ C1(Ω : Rn) : ∥u− u0∥C1 ≤ r

}
.

Definition 1. Let u0 be a solution of problem (1), (2), and r > 0. Problem (1), (2) is said to be
(u0, r)-well-posed if:

(i) u0(x, y) is the unique solution of the problem in the ball B̃1(u0; r);
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(ii) There exists ε0 > 0 such that for an arbitrary ε > 0 and M > 0 there exists δ > 0 such
that for any f̃(x, y, v, w, z) that is continuously differentiable with respect to v and w, φ̃ ∈
C1([0, b];Rn), ψ̃ ∈ C1([0, a];Rn), satisfying the inequalities∥∥∥∂f̃(x, y, v, w, z)

∂v

∥∥∥ ≤ ε0 for (x, y, v, w, z) ∈ Ω× R3n

∥∥∥∂f̃(x, y, v, w, z)
∂w

∥∥∥ ≤M for (x, y, v, w, z) ∈ Ω× R3n,

(3)

∥f̃(x, y, v, w, z)∥ ≤ δ for (x, y, v, w, z) ∈ Ω× R3n, ∥φ̃∥C1([0,b]) + ∥ψ̃∥C1([0,a]) ≤ δ, (4)

the problem

uxy = f(x, y, ux, uy, u) + f̃(x, y, ux, uy, u), (1̃)
u(0, y) = φ(y) + φ̃(y), h

(
ux(x, · )

)
(x) = ψ′(x) + ψ̃′(x), (2̃)

has at least one solution in the ball B1(u0; r), and each such solution belongs to the ball
B1(u0; ε).

Definition 2. Let u0 be a solution of problem (1), (2), and r > 0. Problem (1), (2) is said to be
strongly (u0, r)-well-posed if:

(i) Problem (1), (2) is (u0, r)-well-posed;

(ii) There exist positive numbers M0 and δ0 such that for arbitrary δ ∈ (0, δ0), f̃(x, y, v, w, z) that
is continuously differentiable with respect to v and w, φ̃ ∈ C1([0, b];Rn) and ψ̃ ∈ C1([0, a];Rn),
satisfying the inequalities (3) and (4), problem (1̃), (2̃) has at least one solution in the ball
B1(u0; r), and each such solution belongs to the ball B1(u0;M0 δ).

Definition 3. Problem (1), (2) is called well-posed (strongly well-posed) if it has a unique solution
u0 and it is (u0, r)-well-posed (strongly (u0, r)-well-posed) for every r > 0.

Consider the boundary value problem for the system of nonlinear ordinary differential equations

z′ = p(t, z), ℓ(z) = c, (5)

where p ∈ C([0, b]× Rn;Rn), c ∈ Rn and ℓ : C([0, b];Rn) → Rn is a bounded linear operator.

Definition 4. Let z0 be a solution of problem (5), and r > 0. Problem (5) is said to be (z0, r)-
well-posed if:

(i) z0(t) is the unique solution of the problem in the ball B(z0; r);

(ii) For an arbitrary ε > 0 there exists δ > 0 such that for any c̃, and p̃ ∈ C([0, b]×Rn) satisfying
the inequalities ∥∥c− c̃

∥∥ < δ, ∥p− p̃∥C < δ (6)

the problem
z′ = p̃(t, z), ℓ(z) = c̃, (5̃)

has at least one solution in the ball B(z0; r), and each such solution belongs to the ball
B(z0; ε).

Definition 4 is a slight modification of Definition 3.2 from [1]. Definition 1 is an adaptation of
the idea of Definition 4 to problem (1), (2).
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Definition 5. Let u0 be a solution of problem (5), and r > 0. Problem (5) is said to be strongly
(z0, r)-well-posed if:

(i) z0(t) is the unique solution of the problem in the ball B(z0; r);

(ii) There exist positive numbers M and δ0 such that for arbitrary δ ∈ (0, δ0), c̃k, and p̃ ∈
C([0, b] × Rn) satisfying inequalities (6), problem (5̃) has at least one solution in the ball
B(z0; r), and each such solution belongs to the ball B(z0;M δ).

Remark 1. It is obvious that strong well-posedness implies well-posedness. The converse, however,
is not true. As an example, consider the problem

z′ = z3, z(0) = z(ω), (7)

which is well-posed and has the unique solution z0(t) ≡ 0. The perturbed problem

z′ = z3 − δ, z(0) = z(b)

has the unique solution zδ(t) = δ
1
3 . It is clear that there exists no positive number M such that

δ
1
3 ≤Mδ as δ → 0. Consequently, problem (7) is not strongly well-posed.

Definition 6. A solution z0 of problem (5) is said to be strongly isolated, if problem (5) is strongly
(z0, r)-well-posed for some r > 0.

Remark 2. The concept of a strongly isolated solution of a nonlinear boundary value problem
was introduced in [1]. However, our definition of a strongly isolated solution is a modification of
Definition 3.1 from [1]. Also, Corollary 3.6 from [1] implies that if the vector function p(t, z) is
continuously differentiable with respect to the phase variables, then strong isolation of a solution
z0 is equivalent to the fact that the linear homogeneous problem

z′ = P (t)z, ℓ(z) = 0, (8)

has only the trivial solution, where P (t) = ∂p
∂z (t, z0(t)).

Theorem 1. Let f be a continuously differentiable function with respect to the phase variables v, w
and z, and let u0 be a solution of problem (1), (2). Then, problem (1), (2) is strongly (u0, r)-well-
posed for some r > 0, if and only if the linear homogeneous problem

uxy = P0(x, y)u+ P1(x, y)ux + P2(x, y)uy, (10)
u(0, y) = 0, h(ux(x, · ))(x) = 0, (20)

where Pj(x, y) = Pj [u0](x, y) (j = 0, 1, 2), is well-posed.

Theorem 2. Problem (10), (20) is well-posed if and only if the linear homogeneous problem

dz

dy
= P1(x, y)z, h(z)(x) = 0

has only the trivial solution for every x ∈ [0, a].

Remark 3. The sufficiency part of Theorem 2 was proved in [2] (see Theorems 4.1 and 4.1′).
Similar theorem for higher order linear hyperbolic equations for proved in [4] (see Theorem 1.1).

Theorem 3. Let f be a continuously differentiable with respect to the phase variables v, w and z,
and let there exist matrix functions Qi ∈ C(Ω;Rn×n) (i = 1, 2) and a positive constant ρ such that:
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(A1) ∥F0(x, y, v, w, z)∥+ ∥F2(x, y, v, w, z)∥ ≤ ρ for (x, y, v, w, z) ∈ Ω× R3n;

(A2) Q1(x, y) ≤ F1(x, y, v, w, z) ≤ Q2(x, y) for (x, y, v, w, z) ∈ Ω× R3n;

(A3) for every x ∈ [0, a] and arbitrary measurable matrix function P : [0, b] → Rn×n satisfying the
inequalities

Q1(x, y) ≤ P (y) ≤ Q2(x, y) for y ∈ [0, b],

problem (8) has only the trivial solution. Then problem (1), (2) is strongly well-posed.

Theorem 4. Let f be a continuously differentiable function with respect to the phase variables v,
w and z, and let v0 be a strongly isolated solution of the problem

v′ = p(y, v), h(v)(0) = ψ′(0), (9)

where
p(y, v) = f

(
0, y, v, φ′(y), φ(y)

)
.

Then there exists α ∈ (0, a] such that in the rectangle Ωα = [0, α] × [0, b] problem (1), (2) has a
unique solution u satisfying the condition

ux(0, y) = v0(y) for y ∈ [0, b].

Remark 4. Conditions of Theorem 4 do not guarantee unique solvability of problem (1), (2).
Indeed, consider the problem

uxy =
m∏
k=1

(
ux − k

)
+ x f0(x, y, ux, uy, u), (10)

u(0, y) = 0, u(1,0)(x, 0) = u(1,0)(x, b), (11)

where f0 : Ω× R3 → R is a continuously differentiable function. For this case problem (9) has the
form

v′ =
m∏
k=1

(v − k), v(0) = v(b).

The latter problem has exactlym strongly isolated solutions vk = kπ (k = 1, . . . ,m). By Theorem 4,
for every integer k ∈ {1, . . . ,m} there exists αk > 0 such that in Ωαk

= [0, αk] × [0, b], problem
(10), (11) has a unique solution uk satisfying the condition

u
(1,0)
k (0, y) = k for y ∈ [0, b].

Consider the family of problems

z′ = pλ(t, z), ℓλ(z) = cλ, (12λ)

where λ ∈ Λ, pλ ∈ C([0, b] × Rn;Rn), ℓλ : C([0, b]) → Rn are bounded linear functionals, and
cλ ∈ Rn.

Let for λ ∈ Λ and r > 0, zλ be a solution of problem (12λ). The family of problems (12λ)
(λ ∈ Λ) is said to be uniformly strongly (zλ, r)-well-posed, if:

(i) zλ is unique in the ball B(zλ; r);
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(ii) There exist positive numbers M and δ0 independent of λ such that for arbitrary δ ∈ (0, δ0),
c̃ ∈ Rn, and p̃λ ∈ C([0, b]× Rn;Rn) satisfying the inequalities

∥c− c̃∥ < δ, ∥pλ − p̃λ∥C < δ,

the problem
z′ = p̃λ(t, z), ℓλ(z) = c̃λ, (1̃2λ)

has at least one solution in the ball B(zλ; r), and each such solution belongs to the ball
B(zλ;Mδ).

A family of solutions {zλ}λ∈Λ is said to be uniformly strongly isolated if the family of problems
(12λ) (λ ∈ Λ) is uniformly strongly (zλ, r)-well-posed for some r > 0.

Let J = [0, α), α ∈ (0, a], (J = [0, α], α ∈ (0, a)), and u be a solution of problem (1), (2) in the
rectangle J × [0, b]. u is called continuable, if there exists α1 ∈ [α, a] (α1 ∈ (α, a]) and a solution
u1 of problem (1), (2) in [0, α1]× [0, b] such that

u1(x, y) = u(x, y) for (x, y) ∈ [0, α)× [0, b].

Otherwise u is called non-continuable.

Theorem 5. Let u be a a non-continuable solution of problem (1), (2) defined on J × [0, b], and let
for every x0 ∈ J , v(y) = ux(x0, y) be a solution of the problem

v′ = p[u](x0, y, v), h(v)(x0) = ψ(x0). (13)

If the family of solutions v(y) = ux(x0, y) (x0 ∈ J) is uniformly strongly isolated, then either
J = [0, a], or J = [0, α) and

lim
x→α

(
∥ux(x, · )∥C([0,b]) + ∥u(x, · )∥C([0,b]) + ∥uy(x, · )∥C([0,b])

)
= +∞. (14)

Definition 7. Let u be a non-continuable solution of problem (1), (2) in J×[0, b] and let α = sup J .
We say that a measurable matrix function P : [0, b] → Rn×n belongs to the set Sα

f [u], if there exists
an increasing sequence xk ↑ α as k → ∞ such that

lim
k→∞

y∫
0

P1[u](xk, t) dt =

y∫
0

P (t) dt

uniformly on [0, b].

Corollary. Let u be a non-continuable solution of problem (1), (2) in J × [0, b], and let α = sup J .
If for an arbitrary P ∈ Sα

f [u] the homogeneous problem

z′ = P (t)z, h(z)(α) = 0

has only the trivial solution, then either J = [0, a], or J = [0, α) and (14) holds.
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Let I = [a, b] ⊂ R be a finite and closed interval non-degenerate in the point, t0 ∈ ]a, b[ and
It0 = [a, b] \ {t0}, I−t0 = [a, t0[ , I+t0 = ]t0, b].

Consider the Cauchy problem with weight for linear system of ordinary differential equations
with singularities

dx

dt
= P (t)x+ q(t) for a.a. t ∈ It0 , (1)

lim
t→t0

(Φ−1(t)x(t)) = 0, (2)

where P ∈ Lloc(It0 ,Rn×n), q ∈ Lloc(It0 ,Rn); Φ = diag(φ1, . . . , φn) is a positive diagonal n × n-
matrix valued function defined, continuous on [a, b] \ {t0} and having an inverse Φ−1(t) for t ∈
[a, b] \ {t0}.

Along with system (1) consider the sequence of singular systems

dx

dt
= Pm(t)x+ qm(t) (3)

(m = 1, 2, . . . ) under condition (2), where Pm and qm are, as above, a matrix- and vector-functions,
respectively.

We discuss the question whether the unique solvability of problem (1), (2) guarantees the unique
solvability of problem (3), (2) for each sufficiently large m and nearness of its solutions to the solution
of problem (1), (2) in the definite sense if matrix-functions P and Pm and vector-functions q and
qm are nearly among themselves.

The singularity of system (1) is considered in the sense that the matrix P and vector q functions,
in general, are not integrable at the point t0. In general, the solution of problem (1), (2) is not
continuous at the point t0 and, therefore, it can not be a solution in the classical sense. But its
restriction on every interval from It0 is a solution of system (1). In connection with this we remind
the following example from [6,7].

Let α > 0 and ε ∈ ]0, α[ . Then x(t) = |t|ε−α sgn t is the unique solution of the problem

dx

dt
= −αx

t
+ ε|t|ε−1−α , lim

t→0
(tαx(t)) = 0.
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The function x is not a solution of the equation on the set I = R, however x is a solution to the
above equation only on R \ {0}.

First, the same problem for the differential system (3) have been investigated by I. Kiguradze
(see, [6, 7]), where only the sufficient conditions are obtained. As to sufficient conditions of well-
possedness for functional-differential case they are obtained in [8] (see also the references therein).

The necessary and sufficient conditions of well-posedness of problem (1), (2) has been obtained
in [1, 2] for the regular case.

To our knowledge, the question on necessary and sufficient conditions of well-posedness of
problem (1), (2) with singularity has not been considered up to now. So the problem is actual.

As to the existence of solutions and related problems for system (1), first, they are investigated
by V. A. Chechik in the monograph [5]. Similar problems for impulsive differential and so called
generalized ordinary differential systems are investigated in [3,4] and for functional-differential case
in [8] (see also the references therein).

We present necessary and sufficient conditions, as well effective sufficient conditions for so called
Φ-well-posedness of problem (1), (2).

Throughout the paper we use the following notation and definitions.
R = ] − ∞,+∞[ , R+ = [0,+∞[ ; [a, b] and ]a, b[ (a, b ∈ R) are, respectively, closed and open

intervals.
Rn×m is the space of real n×m matrices X with the standard norm ∥X∥.
If X = (xik)

n,m
i,k=1 ∈ Rn×m, then |X| = (|xik|)n,mi,k=1.

[X]± =
1

2
(|X| ±X), Rn×m

+ =
{
(xik)

n,m
i,k=1 : xik ≥ 0 (i = 1, . . . , n, k = 1, . . . ,m)

}
.

Rn = Rn×1 is the space of all column n-vectors x = (xi)
n
i=1; Rn

+ = Rn×1
+ .

On×m (or O) is the zero n×m-matrix, 0n (or 0) is the zero n-vector.
In is identity n× n-matrix.
If X ∈ Rn×n, then X−1, detX and r(X) are, respectively, the matrix inverse to X, the deter-

minant of X and the spectral radius of X.
The inequalities between the matrices are understood componentwisely.
A matrix-function is said to be continuous, integrable, nondecreasing, etc., if each of its com-

ponent is such.
AC([a, b];D), where D ⊂ Rn×m, is the set of all absolutely continuous matrix-functions X :

[a, b] → D.
ACloc(J ;D), where J ⊂ R, is the set of all matrix-functions X : J → D whose restrictions to

an arbitrary closed interval [a, b] ⊂ J belong to AC([a, b];D).
Lloc(It0 ;Rn×m) is the set of all matrix-functions X : It0 → D whose restrictions on every closed

interval [a, b] from It0 belong to L([a, b];Rn×m).
Under a solution of problem (1), (2) we understand a vector-function x ∈ AC(It0 ;Rn) satisfying

the equality x′(t) = P (t)x(t) + q(t) for a.a. t ∈ It0 and condition (2).
Let P∗ = (p∗ik)

n
i,k=1 ∈ Lloc(It0 ;Rn×n). A matrix-function C∗ : It0 × It0 → Rn×n is said to be

the Cauchy matrix of the homogeneous system
dx

dt
= P∗(t)x, (4)

if, for each interval J ⊂ I and τ ∈ J , the restriction of the matrix-function C∗( · , τ) : It0 → Rn×n

on J is the fundamental matrix of system (4), satisfying the condition C∗(τ, τ) = In. Therefore,
C∗ is the Cauchy matrix of system (4) if and only if the restriction of C∗ on J × J is the Cauchy
matrix of the system in the regular case.
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Definition 1. Problem (1), (2) is said to be Φ-well-posed with respect to the matrix-function P∗
if it has a unique solution x0 and for every sequences of matrix Pm and vector qm (m = 1, 2, . . . )
functions such that

lim
t→t0

(
Φ−1(t)

t∫
t0

(qm(s)− q(s)) ds

)
= 0n (5)

for each sufficiently large m, and conditions

lim
m→+∞

∥∥∥∥
t∫

t0

Φ−1(s) |Pm(s)− P (s)|Φ(s) ds
∥∥∥∥ = 0 uniformly on I (6)

and

lim
m→+∞

(∥∥∥∥Φ−1(t)

t∫
t0

(qm(s)− q(s)) ds

∥∥∥∥+

∥∥∥∥
t∫

t0

Φ−1(s)

∣∣∣∣P∗(s)

s∫
t0

(qm(τ)− q(τ)) dτ

∣∣∣∣ ds∥∥∥∥) = 0 (7)

uniformly on I

hold, problem (3), (2) has the unique solution xm for each sufficiently large m and the condition

lim
m→+∞

∥∥Φ−1(t) (xm(t)− x0(t))
∥∥ = 0 uniformly on I (8)

hold.

The introduced definition is more general than the one given in [6, 7].

Definition 2. We say that the sequence (Pm, qm) (m = 1, 2, . . . ) belongs to the set SP∗(P, q; Φ, t0)
if problem (3), (2) has a unique solution xm for each sufficiently large m and condition (8) holds.

Theorem 1. Let there exist a matrix-function P∗ ∈ Lloc(It0 ;Rn×n) and constant matrices B0, B ∈
Rn×n
+ such that

r(B) < 1, (9)

and the estimates

|C∗(t, τ)| ≤ Φ(t)B0Φ
−1(τ) for t ∈ It0(δ), (t− t0)(τ − t0) > 0, |τ − t0| ≤ |t− t0| (10)

and ∣∣∣∣
t∫

t0

∣∣C∗(t, s)(P (s)− P∗(s))
∣∣Φ(s) ds∣∣∣∣ ≤ Φ(t)B for t ∈ It0(δ) (11)

are fulfilled for some δ > 0, where C∗ is the Cauchy matrix of system (4). Let, moreover,

lim
t→t0

∥∥∥∥
t∫

t0

Φ−1(t)C∗(t, s)q(s) ds

∥∥∥∥ = 0. (12)

Then problem (1), (2) is Φ-well-posed with respect to P∗.

Remark 1. Under the conditions of Theorem 1 problem (1), (2) is uniquely solvable (see, [6, 7]).
In addition, condition (9) is essential and it cannot be neglected by r(B) ≤ 1, i.e., in the last case
the problem may not be solvable. Corresponding example one can find in [6, 7], as well.
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Theorem 2. Let conditions of Theorem 1 be fulfilled and sequences Pm and qm (m = 1, 2, . . . ) be
such that conditions (6) and (7) hold. Then

((Pm, qm))+∞
m=1 ∈ SP∗(P, q; Φ, t0). (13)

Theorem 3. Let conditions of Theorem 1 be fulfilled and let there exist a sequence of the non-
degenerated matrix-functions Hm ∈ ACloc(It0 ;Rn×n) (m = 1, 2, . . . ) such that

lim
t→t0

(
Φ−1(t)

t∫
t0

(qm∗(s)− q(s)) ds

)
= 0n (14)

for each sufficiently large m. Let, moreover, the conditions

lim
m→+∞

∥∥Φ−1(t)H−1
m (t)Φ(t)− In

∥∥ = 0, (15)

lim
m→+∞

∥∥∥∥
t∫

t0

Φ−1(s)|Pm∗(s)− P (s)|Φ(s) ds
∥∥∥∥ = 0 (16)

and

lim
m→+∞

∥∥∥∥Φ−1(t)

∣∣∣∣
t∫

t0

(qm∗(s)− q(s)) ds

∣∣∣∣+ ∣∣∣∣
t∫

t0

Φ−1(s)

∣∣∣∣P∗(s)

s∫
t0

(qm∗(τ)− q(τ)) dτ

∣∣∣∣ ds∣∣∣∣ ∥∥∥∥ = 0 (17)

be fulfilled uniformly on It0, where Pm∗(t) ≡ (H ′
m(t)+Hm(t)Pm(t))H−1

m (t) and qm∗(t) ≡ Hm(t)qm(t)
(m = 1, 2, . . . ). Then inclusion (13) holds.

Theorem 4. Let conditions of Theorem 1 be fulfilled. Let, moreover,

∥B0∥ ∥(In −B)−1∥ < 1 (18)

and

lim sup
t→t0

∥∥∥∥
t∫

t0

Φ−1(s)|P∗(s)|Φ(s) ds
∥∥∥∥ < +∞. (19)

Then inclusion (13) holds if and only if there exist a sequence of matrix-functions Hm ∈
ACloc(It0 ;Rn×n) (m = 1, 2, . . . ) such that condition (15) holds uniformly on I, and conditions
(16) and (17) hold uniformly on It0, where Pm∗(t) and qm∗ (m = 1, 2, . . . ) are defined as in
Theorem 3.

Theorem 4′. Let conditions of Theorem 1 be fulfilled. Let, moreover, (18) and (19) hold. Then
inclusion (13) holds if and only if

lim
t→t0

∥∥∥∥Φ−1(t)

t∫
t0

(
X0(s)X

−1
m (s)qm(s)− q(s)

)
ds

∥∥∥∥ = 0 (m = 1, 2, . . . ),

and

lim
m→+∞

∥Φ−1(t)(Xm(t)−X0(t))∥ = 0,
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lim
m→+∞

∥∥∥∥Φ−1(t)

∣∣∣∣
t∫

t0

(
X0(s)X

−1
m (s)qm(s)− q(s)

)
ds

∣∣∣∣
+

∣∣∣∣
t∫

t0

Φ−1(s)P∗(s)

∣∣∣∣
s∫

t0

(
X0(τ)X

−1
m (τ)qm(τ)− q(τ)

)
dτ

∣∣∣∣ ds∣∣∣∣ ∥∥∥∥ = 0,

hold uniformly on It0, where X0 and Xm (m = 1, 2, . . . ) are the fundamental matrices of systems
(1) and (3), respectively.
Corollary 1. Let conditions of Theorem 1 be fulfilled for q(t) ≡ 0n. Let, moreover, (18) and (19)
hold. Then inclusion (13) holds if and only if

((Pm, 0n))
+∞
m=1 ∈ SP∗(P, 0n; Φ, t0). (20)

Remark 2. In Theorem 4′, as in Corollary 1, condition (18) is essential and it cannot be neglected,
i.e., if the condition is violated, then the conclusion of the theorem and the corollary is not true.
We present an example.

Let I = [0, 1], n = 1, t0 = 0, B = 0, B0 = 1, Φ(t) ≡ t; P (t) = Pm(t) = P∗(t) ≡ t−1

(m = 1, 2, . . . ), q(t) ≡ 0, qm(t) ≡ m−1 cos(m−1 ln t) (m = 1, 2, . . . ). Then

C∗(t, τ) ≡ tτ−1, x0(t) ≡ 0, xm(t) ≡ t sin
ln t

m
(m = 1, 2, . . . ).

So, all the conditions of Theorem 4′ are fulfilled, except of (18), but condition (8) is not fulfilled
uniformly on I. On other hand, this means that condition (20) is fulfilled but condition (13) is
violated.
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1 Introduction
Fractional differential equations have already proved to be valuable tools to the modelling of many
physical phenomena [2, 4, 5, 8]. There are many techniques for solving fractional differential equa-
tions, in particular, RFPS method (residual fractional power series), which allows us to obtain
solutions to initial value problems for Emden–Fowler type equations in the form of fractional power
series [7]. These equations have many applications in the fields of radioactivity cooling and in the
mean-field treatment of a phase transition in critical adsorption, kinetics of combustion or reactants
concentration in chemical reactor and isothermal gas spheres and thermionic currents [1, 9].

2 Problem statement
Definition 2.1 ([4]). For µ ∈ R the space Cµ is the space of functions f given on the half-axis
R+ ≡ [0,+∞) and represented in the form f = xpf1 for some p > µ, where the function f1 is
continuous on R+:

Cµ =
{
f : f = xpf1, f1‘ ∈ C(R+) for some p > µ ∈ R

}
.

Similarly, the space Cn
µ is the space of functions f given on the half-axis R+ such that f (n) ∈ Cµ.

Definition 2.2. For given x0 ≥ 0 the α order Caputo fractional derivative of function f ∈ Cn
−1

such that f (n)|x=x0 = 0, where α ∈ [n, n+ 1), n ∈ N, is defined by

C
x0
Dα

xf ≡ 1

Γ(n− α+ 1)

x∫
x0

(x− t)n−αf (n+1)(t) dt or, respectively, C
x0
Dn

xf ≡ f (n)(x).

Definition 2.3. For given α ≥ 0 the fractional power series (FPS) around the center x0 ∈ R is a
functional series of the following form:

+∞∑
n=0

cn(x− x0)
nα, x ≥ x0.

Properties of FPS are presented in [3]. Let α ∈ (1/2, 1], and Dα
x ≡ C

0 D
α
x . We consider the

following initial value problem (IVP):

D2α
x u+

a

xα
Dα

xu+ s(x)g(u) = h(x), x > 0, u(0) = û0, Dα
xu

∣∣
x=0

= 0, (1)
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where

s(x) ≡
+∞∑
n=0

sn
xnα

Γ(1 + nα)
, h(x) ≡

+∞∑
n=0

hn
xnα

Γ(1 + nα)
, g(u) ≡

K∑
k=0

aku
k, K ∈ N.

Using FPS the solution to IVP (1) can be written as

u(x) =

+∞∑
n=0

un
xnα

Γ(1 + nα)

(
UN (x) ≡

N∑
n=0

un
xnα

Γ(1 + nα)

)
. (2)

3 Main results
Theorem. If the solution to IVP (1) is sought in the form of series (2), then the following equalities
hold: u0 = û0, u1 = 0 and

uN

(
1 +

aΓ(1 + (N − 2)α)

Γ(1 + (N − 1)α)

)
= hN−2 −D(N−2)α

x

( N∑
n=0

sn
xnα

Γ(1 + nα)

K∑
k=0

akU
k
N (x)

)∣∣∣∣
x=0

, N ≥ 2.

Corollary 3.1. If s(x) ≡ s ∈ R, h(x) ≡ 0 and g(u) ≡ u, then the solution to problem (1) is given
in the form of the following series

u(x) = û0 +

+∞∑
n=1

(−1)nsnû0

( n∏
k=1

Γ(1 + (2k − 1)α)

Γ(1 + (2k − 1)α) + aΓ(1 + 2(k − 1)α)

)
x2nα

Γ(1 + 2nα)
,

which converges absolutely and uniformly for x ≥ 0.

Figure 1. Graphs of the solutions to IVP (1) in case s(x) ≡ s ∈ R, h(x) ≡ 0, g(u) ≡ u
and α = û0 = s = 1 and various values of a.

Under the conditions of Corollary 3.1 and in case of integer order differential operator (α = 1)
we obtain the solutions to IVP (1), if û0 = s(x) ≡ 1 and a = 1, 5:

u(x) = J0(x),
sinx

x
,
2J1(x)

x
,
3 sinx− 3x cosx

x3
,
8J2(x)

x2
,
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where Ja(x) are Bessel functions of the first kind. It is noteworthy that in [6] in case a = 2 the
same solution was obtained by using fractional differential transformation method (FDT).

Corollary 3.2. If s(x) ≡ xα and

h(x) ≡ Γ(1 + 2α) +
aΓ(1 + 2α)

Γ(1 + α)
+ xα(û0 + x2α)k, g(u) ≡ uk,

where k ∈ N, then IVP (1) has a solution u(x) = û0 + x2α.
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1 Introduction
We consider an extremum problem with weighted integral cost functional for the following parabolic
mixed problem

ut = (a(x, t)ux)x + b(x, t)ux + h(x, t)u, (x, t) ∈ QT = (0, 1)× (0, T ), T > 0, (1.1)
u(0, t) = φ(t), ux(1, t) = ψ(t), 0 < t < T, (1.2)

u(x, 0) = ξ(x), 0 < x < 1, (1.3)

where the real functions a, b and h are smooth in QT , 0 < a0 ≤ a(x, t) ≤ a1 < ∞, φ ∈ W 1
2 (0, T ),

ψ ∈ W 1
2 (0, T ), ξ ∈ L2(0, 1). Here W 1

2 (0, T ) is the Sobolev space of weakly differentiable functions
with the norm

‖u‖2W 1
2 (0,T ) =

T∫
0

(u′
2
+ u2) dt.

We study the control problem with pointwise observation: by controlling the temperature φ at
the left end of the segment (the functions ψ and ξ are assumed to be fixed), we try to make at some
point x0 ∈ (0, 1) the temperature u(x0, t) close to the given function z(t) over the entire time interval
(0, T ). This problem arises in the model of climate control in industrial greenhouses [1, 6]. Note
that extremal problems for parabolic equations were considered in [11,15,17,18] (as usual, problems
with final or distributed observation). But the results and methods of investigation are not similar
to our methods. The proposed paper develops and generalizes the authors’ results of [1–8]. Here
we study a more general equation with a variable diffusion coefficient a, a convection coefficient b,
and a potential h called the depletion potential. We state a problem of double minimization to our
functional obtain by finding first minimum of the functional in some class of control functions and
iterated minimum by weight. For such problem we prove the existence of a pair of minimizers.

As well as in [13, p. 6], we denote by V 1,0
2 (QT ) the Banach space of functions u ∈ W 1,0

2 (QT )
with the finite norm

‖u‖
V 1,0
2 (QT )

= sup
0≤t≤T

‖u( · , t)‖L2(0,1) + ‖ux‖L2(QT )

such that t 7→ u( · , t) is a continuous mapping from [0, T ] to L2(0, 1). Let W̃ 1
2 (QT ) be set of all

functions η ∈W 1
2 (QT ) satisfying the conditions η( · , T ) = 0, η(0, · ) = 0.
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Definition 1.1. A function u ∈ V 1,0
2 (QT ), satisfying the condition u(0, t) = φ(t) and the equality∫

QT

(a(x, t)uxηx − b(x, t)uxη − h(x, t)uη − uηt) dx dt

=

1∫
0

ξ(x)η(x, 0) dx+

T∫
0

a(1, t)ψ(t) η(1, t) dt (1.4)

for all η ∈ W̃ 1
2 (QT ), is called a weak solution to problem (1.1)–(1.3).

2 Main Results
Theorem 2.1. The problem (1.1)–(1.3) has a unique weak solution u ∈ V 1,0

2 (QT ), which satisfies
the inequality

‖u‖
V 1,0
2 (QT )

≤ C1

(
‖φ‖W 1

2 (0,T ) + ‖ψ‖W 1
2 (0,T ) + ‖ξ‖L2(0,1)

)
(2.1)

with some constant C1 independent of φ, ψ and ξ.

Corollary 2.1. The solution u to problem (1.1)–(1.3) continuously depends on the triple (ξ, φ, ψ)
from L2(0, 1)×W 1

2 (0, T )×W 1
2 (0, T ).

We consider a set of control functions φ ∈W 1
2 (0, T ) and a set of objective functions z ∈ L2(0, T ).

These sets are denoted by Φ and Z. Hereafter we suppose that Φ is a non-empty, closed, convex,
and bounded set. Consider the weighted integral cost functional

J [z, ρ, φ] =

T∫
0

(uφ(x0, t)− z(t))2ρ(t) dt, x0 ∈ (0, 1), φ ∈ Φ, z ∈ Z,

where uφ ∈ V 1,0
2 (QT ) is the solution to problem (1.1)–(1.3) with the given control function φ. Here

ρ ∈ L∞(0, T ) is a real-valued weight function such that ess inf
t∈(0,T )

ρ(t) > 0. Assuming the functions

z and ρ to be fixed, consider the minimization problem of finding

m[z, ρ,Φ] = inf
φ∈Φ

J [z, ρ, φ].

Theorem 2.2 ([5, 8, 9]). For any z ∈ L2(0, T ) there exists a unique function φ0 ∈ Φ such that

m[z, ρ,Φ] = J [z, ρ, φ0].

Take ˜̃ρ > ρ̃ > 0, we consider the set P ⊂ L∞(0, T ) of all weight functions ρ with

ess inf
t∈(0,T )

ρ(t) > ρ̃, ess sup
t∈(0,T )

ρ(t) 6 ˜̃ρ.
Let us state for some subset P̃ ⊂ P the double minimum problem

µ[z, P̃ ,Φ] = inf
ρ∈P̃

m[z, ρ,Φ].

Definition 2.1 ([12]). Let X be a Banach space. The set Y ⊂ X∗ is called a regularly convex if
for any y /∈ Y there exists an element x0 ∈ X such that

sup
f∈Y

f(x0) < y(x0).
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Theorem 2.3. Let the set P̃ be regularly convex in L∞(0, T ). Then for all z ∈ L2(0, T ) there exist
functions ρ0 ∈ P̃ and φ0 ∈ Φ such that

µ[z, P̃ ,Φ] = J [z, ρ0, φ0].

3 Proofs
At first we establish the following generalization of the classical maximum principle (see [13, Ch. 3,
Par. 7]).

Lemma 3.1. If u ∈ V 1,0
2 (QT ) is a solution to the problem

ut = (a(x, t)ux)x + b(x, t)ux + h(x, t)u, (x, t) ∈ QT , (3.1)
u(0, t) = φ(t), ux(1, t) = 0, 0 < x < 1, t > 0,

u(x, 0) = 0, 0 < x < 1,

then the inequality
ess sup

(x,t)∈QT

|u(x, t)| ≤ C2 sup
t∈[0,T ]

|φ(t)| (3.2)

holds with a constant C2 > 0 depending only on the coefficients of equation (3.1).

Also we will use the following statements to prove Theorem 2.3.

Theorem 3.1 ([12, Theorem 10]). Let X be a separable Banach space. Then a set Y ⊂ X∗ is
regularly convex if and only if it is convex and ∗-weakly closed.

Theorem 3.2 ( [10, Ch. 8, § 7]). For any bounded sequence (ρk)k∈N in L∞(0, T ) there exist a
subsequence (ρkj )j∈N and a function ρ0 ∈ L∞(0, T ) such that

lim
j→+∞

T∫
0

ρkj (t)ζ(t) dt =

T∫
0

ρ0(t)ζ(t) dt

for any function ζ ∈ L1(0, T ).

Proof of Theorem 2.3. Put d = µ[z, P̃ ,Φ]. Then there exists a sequence of weight functions
ρ1, ρ2, . . . ∈ P̃ such that

m[z, ρk,Φ] → d, k → ∞. (3.3)

So, by (3.3) and Theorem 2.2 there exists a sequence of control functions φ1, φ2, · · · ∈ Φ satisfying

J [z, ρk, φk] = m[z, ρk,Φ] → d, k → ∞.

The functions φk belong to Φ, so, the sequence of norms ‖φk‖W 1
2 (0,T ) is bounded due to boundedness

of the set Φ. Therefore, there exists a subsequence (φkj )j∈N converging weakly inW 1
2 (0, T ) to some

function φ0 ∈ Φ due to closeness of the set Φ. Now, by compact embedding of W 1
2 (0, T ) into

C([0, T ]), the sequence (φkj )j∈N converges to φ0 by norm of C([0, T ]):

‖φkj − φ0‖C([0,T ]) → 0, j → ∞. (3.4)

Further we write φk instead if φkj .
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The next step is to study behavior of the sequence of solutions uk = uφk
, k = 1, 2, . . . , to

problem (1.1)–(1.3) in the space W 1,0
2 (QT ). Functions uk are solutions of the following mixed

problems:

ukt = (a(x, t)ukx)x + b(x, t)ukx + h(x, t)uk, (x, t) ∈ QT ,

uk(0, t) = φk(t), ukx(1, t) = ψ(t), 0 < t < T,

uk(x, 0) = ξ(x), 0 < x < 1.

Functions uφk
satisfy the condition uφk

(0, t) = φk(t) and by (1.4) the equalities∫
QT

(a(x, t)uφkxηx − b(x, t)uφkxη − h(x, t)uφk
η − uφk

ηt) dx dt

=

1∫
0

ξ(x)η(x, 0) dx+

T∫
0

a(1, t)ψ(t) η(1, t) dt (3.5)

for all η ∈ W̃ 1
2 (QT ). It follows from (2.1) that

‖uφk
‖
W 1,0

2 (QT )
≤ C3‖uφk

‖
V 1,0
2 (QT )

≤ C4

(
‖φk‖W 1

2 (0,T ) + ‖ψ‖W 1
2 (0,T ) + ‖ξ‖L2(0,1)

)
≤ C5

with a constant C5 independent of k. So, there exists a subsequence uφkj
(we denote it by uj) such

that uj → u0, j → ∞, weakly for some u0 ∈ W 1,0
2 (QT ). From (3.5) and the weak convergence of

the sequence uj in W 1,0
2 (QT ), it follows that the weak limit (the function u0) satisfies equality (1.4)

for all η ∈ W̃ 1
2 (QT ). Now, we prove that u0|x=0 = φ0. By the Banach–Saks theorem [16, Ch. 2,

Sec. 38] we have a subsequence (we denote it by uj too) such that

‖ûk − u0‖W 1
2 (QT ) → 0, k → ∞, ûk =

1

k

k∑
j=1

uj . (3.6)

Therefore,
‖ûk(0, t)− u0(0, t)‖L2(0,T ) ≤ C6‖ûk − u0‖W 1

2 (QT ) → 0, k → ∞. (3.7)

But it follows from (3.6), (3.7) that in the L2(0, T ) space we have

u0(0, · ) = s− lim
k→∞

1

k

k∑
j=1

φj( · ) = w − lim
k→∞

1

k

k∑
j=1

φj( · ) = w − lim
k→∞

φk( · ) = φ0( · ).

(If φk converges to φ0 weakly in W 1
2 (0, T ), then it converges weakly to φ0 in L2(0, T ) too.) So, the

limit function u satisfies u0|x=0 = φ0. It means that u is a solution to problem (1.1)–(1.3) with the
control function φ = φ0. Let vk = uφk

− uφ0 . Functions vk are solutions to the following mixed
problems:

vkt = (a(x, t)vkx)x + b(x, t)vkx + h(x, t)vk, (x, t) ∈ QT ,

vk(0, t) = φk(t)− φ0(t), vkx(1, t) = 0, 0 < t < T,

vk(x, 0) = 0, 0 < x < 1.

By inequalities (3.2) and (3.4) we obtain that

‖vk(x0, t)‖L2(0,T ) ≤
√
T ‖vk(x0, t)‖C([0,T ]) → 0, k → ∞.
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So, the sequence of functions {(uk(x0, · )− z( · ))2}∞k=1 converges by norm in the L1(0, T ) space to
the function (u0(x0, · )−z( · ))2. Now, by Theorem 3.1 we can extract from the minimizing sequence
of weight functions ρk(t) a subsequence (we will denote it also ρk(t)) that *-weakly converges in
L∞(0, T ) to some ρ0 ∈ P̃ . Combining this with Theorem 3.2, we obtain the following relation:

µ[z, P̃ ,Φ] = lim
k→∞

T∫
0

(uφk
(x0, t)− z(t))2ρk(t) dt =

T∫
0

(uφ0(x0, t)− z(t))2ρ0(t) dt = J [z, ρ0, φ0].

Proof of Theorem 2.3 is completed.
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Consider the Riccati equation

y′ = P (x) +Q(x)y + y2, (1)

where P (x) and Q(x) are continuous functions bounded on (−∞;∞). Suppose the equation

y2 +Q(x)y + P (x) = 0

has real bounded roots α1(x) ∈ C1(−∞,+∞) and α2(x) ∈ C1(−∞,+∞). So, equation (1) can be
written as

y′(x) = (y(x)− α1(x))(y(x)− α2(x)). (2)

Thus we have
Q2(x)− 4P (x) > 0.

Suppose that either α2(x) > α1(x), x ∈ (−∞,+∞), or α2(x) = α1(x), x ∈ (−∞,+∞), that
α1(x) and α2(x) are bounded C1 functions on (−∞,+∞).

We define a function Y0(x) by

Y0(x) :=
[(α1(x)− α2(x))

2

4
+

(α1(x) + α2(x))
′

2

]
.

Lemma 1 ([4, Lemma 4.1]). Suppose x0 < ω ≤ +∞. Then there exist S∗ ∈ [x0, ω) and a solution
y∗(x) to equation (2) defined on (S∗, ω) such that any solution y(t) defined on (S, ω) satisfies S ≥ S∗
and y(x) ≤ y∗(x) for all x ∈ (S, ω).

Hereafter the solution y∗(x) from the last lemma is called a principal solution.

Definition 1 ([5]). The functions α1 and α2 in equation (2) are said to satisfy the stabilization
conditions if there exist finite limits

lim
x→±∞

αj(x) =: αj,± ∈ R, j = 1, 2. (3)

Definition 2 ([5]). The functions α1 and α2 are said to satisfy the monotone stabilization con-
ditions if there exists A > 0 such that

α′
1(x) ̸= 0, α′

2(x) ̸= 0 for all x ̸∈ [−A,A]. (4)

Definition 3 ([5]). A solution y(x) to equation (2) is called stabilizing if there exist finite limits

lim
x→±∞

y(x) =: y± ∈ R.
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Theorem 1. Suppose

Q′(x) <
Q2(x)

2
− 2P (x) for all x ≥ x0.

Then any solution y(x) to equation (2) with y(x0) ≤ −Q(x0)
2 satisfies also the condition

y(x) < −Q(x)

2
for all x > x0.

Corollary 1. Suppose that α1(x) = α2(x) = α(x) for all x ∈ (−∞,+∞) and α′(x) > 0 for all
x ≥ x0. Then any solution y(x) to equation (2) with y(x0) ≤ α(x0) satisfies also the condition
y(x) < α(x) for all x > x0.

Theorem 2. Any solution to equation (2) defined at some x0 ∈ R is bounded below to the right
of x0.

Theorem 3. Suppose there exists a constant M such that α1(x) ≤ α2(x) ≤ M for all x ≥ x0.
Then any solution y(x) to equation (2) with y0 = y(x0) > M monotonically increases to the right
of x0 and

lim
x→x

y(x) = +∞ with x0 < x < x0 +
1

y0 −M
.

Note that in the particular case α2(x) = α1(x) on (−∞,+∞), Theorem 3 yields the first
statement of Theorem 5.5 from [2].

Now by using the substitutions x̂ = −x, ŷ(x̂) = −y(−x̂) we transform equation (2) to the form

d

dx̂
ŷ(x̂) =

(
ŷ(x̂)− α̂1(x̂)

)(
ŷ − α̂2(x̂)

)
,

where α̂1(x̂) = −α1(x), α̂2(x̂) = −α2(x). Thus, we can obtain analogues of Theorems 1–3 and their
corollaries for the case x ≤ x0. In particular, the following theorem is an analogue of Theorem 3.

Theorem 3′. If there exists a constant m such that α2(x) ≥ α1(x) ≥ m for all x ≤ x0, then every
solution y(x) to (2) with y0 = y(x0) < m is monotonic for x ≥ x0 and

lim
x→x

y(x) = −∞, where x0 > x > x0 −
1

m− y0
.

Obtained Theorems 1–3 and 3′ complement results of [2]. We used results of [4,5] and the proof
of Lemma 7.1 ([3, p. 365]) to obtain the following theorems.

Theorem 4. Let y3(x) < y2(x) < y1(x) be different solutions to (2) defined at a point x0 and
y1 be extensible on [x0,+∞). Then y2 and y3 are also extensible on [x0,+∞) with the following
properties:

1) The ratio y1(x)−y3(x)
y1(x)−y2(x)

is monotonically decreasing on [x0,+∞);

2) There exists a finite limit lim
x→+∞

y1(x)−y3(x)
y1(x)−y2(x)

;

3) If y1(x) is a principal solution for the interval (x0,+∞), then the above limit equals 1.

Theorem 5. Let y1(x), y2(x) be two different solutions to (2) defined on [x0,+∞). Let both of
them have different finite limits as x → +∞. Then every solution to (2) defined on [x0,+∞) has
a finite limit as x → +∞.
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Theorem 6. Let y1(x) > y2(x) be two different solutions to (2) defined on [x0,+∞). Let both
of them have finite limits as x → +∞. Then every solution to (2) defined at the point x0 with
y(x0) ≤ y1(x0) is extensible on [x0,+∞) and has a finite limit as x → +∞.
Theorem 7. Let (2) have solutions defined on [x0,+∞). Let y1(x) = y∗(x) be the principal
solution for the interval (x0,+∞). Let y1(x) and another solution y2(x) < y1(x) have finite limits
as x → +∞. Then every solution to (2) defined on [x0,+∞) and different from y∗(x) has a finite
limit as x → +∞. This limit is equal to the limit of y2(x) as x → +∞.

Further we assume that the functions α1(x) and α2(x) are bounded and satisfy (3), (4), and
α2(x) > α1(x), x ∈ (−∞,+∞). As shown in [5], in this case all bounded solutions are stabilizing
(and vice versa), all stabilizing solutions are monotonically stabilizing and y− equals α1,− or α2,−,
while y+ equals α1,+ or α2,+.

According to [5], all stabilizing solutions to (2) are divided into four types:
type I : y− = α1,−, y+ = α1,+.

type II : y− = α2,−, y+ = α1,+.
type III : y− = α2,−, y+ = α2,+.
type IV : y− = α1,−, y+ = α2,+.
Theorem 8. Suppose α1,+ ̸= α2,+, α1,− ̸= α2,−, and Y0(x) ≤ 0 on R \ [a, b]. Then all solutions to
(2) are not stabilizing.

The last theorem complements Theorem 3.4 from [5].
Theorem 9. Suppose that α1,+ ̸= α2,+, α1,− ̸= α2,−, and equation (2) has a stabilizing solution of
type II. Then there exist a unique solution of type I and a unique solution of type III. Denote them
by yI and yIII , respectively. Let y(x) be a solution to (2). Then:

• if yI < y < yIII , then y(x) is a stabilizing solution of type II;

• if y > yIII , then there exists x∗ ∈ R such that y(x) is extensible on the interval (−∞, x∗) and
lim

x→−∞
y(x) = α2,−, lim

x→x∗−0
y(x) = +∞;

• if y < yI , then there exists x∗ ∈ R such that y(x) is extensible on the interval (x∗,+∞) and
lim

x→+∞
y(x) = α1,+, lim

x→x∗+0
y(x) = −∞.

Theorem 10. Suppose α1,+ ̸= α2,+, α1,− ̸= α2,−. Then the following conditions are equivalent.
1) There exist stabilizing solutions to (2) of type I and of type III.

2) There exist a unique stabilizing solution to (2) of type I and a unique stabilizing solution to
(2) of type III.

3) There exists a stabilizing solution to (2) of type II.
Theorem 11. Suppose α1,+ ̸= α2,+, α1,− ̸= α2,−. Then exactly one of the following statements is
true:

1) There exists a stabilizing solution to (2) of type II.

2) There exist a stabilizing solutions to (2) of type I and a unique stabilizing solution of type IV.

3) There exist a stabilizing solution to (2) of type III and a unique stabilizing solution of type IV.

4) All stabilizing solutions, if any, are stabilizing solutions of type IV.
Theorems 8–11 complement Theorems 2.1–2.4 from [5].
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1 Introduction. Basic definitions
For a positive integer n, by Mn we denote the class of linear differential systems

ẋ = A(t)x, x ∈ Rn, t > 0, (1.1)

whose coefficient matrices A( · ) : [0,+∞) → EndRn are piecewise continuous and bounded on the
time half-line t > 0. By CMn we denote a subclass of the class Mn, consisting of systems with
continuous coefficients on the half-line. We identify system (1.1) with its coefficient matrix and
write A ∈ Mn or A ∈ CMn. The linear space of solutions of system (1.1) is denoted by X (A).

The following definition is well known.

Definition 1.1. A system in Mn is said to be exponentially dichotomous or called a system with
exponential dichotomy on the half-line if there exist positive constants c1, c2 and ν1, ν2 and a
decomposition of the space Rn of initial data (at t = 0) into a direct sum of subspaces L− and L+

(the case of zero dimension of the subspaces not being excluded) such that the solutions x( · ) of
the system satisfy the following two conditions:

(1) if x(0) ∈ L−, then ∥x(t)∥ 6 c1e
−ν1(t−s)∥x(s)∥ for all t > s > 0;

(2) if x(0) ∈ L+, then ∥x(t)∥ > c2e
ν2(t−s)∥x(s)∥ for all t > s > 0.

The study of this class of systems was initiated in Perron’s paper [13]. It was preceded by
fundamental works by Hadamard [10] and Bohl [8], who had developed the same key ideas that
later transformed to the concept of exponential dichotomy. The above definition was actually given
by Maisel’ [11], but it was Massera and Schäffer [12] who stated it explicitly for the first time.
Systems with exponential dichotomy, are one of the most comprehensively studied classes of linear
differential systems, with, in addition, has important application in related branches of the theory
of differential equations (see, e.g., [1]).

The efficiency of the notion of exponential dichotomy is in studying the asymptotics of solutions
of nonlinear systems that are exponentially dichotomous in the first approximation and in its
applications to dynamical systems has served as a reason for diverse generalizations of this notion
within the theory of linear differential systems itself and beyond, e.g. in the theory of evolution
operators and in the theory of linear extensions dynamical systems. We do not give any references
to papers dealing with such generalizations, because there are far too many of them. We only
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mention the papers [14] and [4,5], in which the generalizations of exponential dichotomy are closest
to the ones considered in the present paper.

We denote class of n-dimensional exponentially dichotomous system on the time half-line by
En and the subclass of systems whose coefficient matrices are continuous of the half-line by CEn.
In Definition 1.1, the positive constant factors c1 and c2 are the same for all solutions such that
x(0) ∈ L− and x(0) ∈ L+ respectively (or, in other words, estimates 1) ¨ 2) are uniform with
respect to the constants c1 and c2 on L− and L+ respectively). In exactly the same way, estimates
(1) and (2) are also uniform in the time variable; i.e., they hold for all t > s starting from zero for
all x(0) ∈ L− and x(0) ∈ L+.

The question considered in the present paper is as follows. Is the condition that estimates (1)
and (2) be uniform with respect to the constant factors or the time variable a necessary condition
for the exponential dichotomy of system (1.1)? If yes, how strongly may the known properties of
exponentially dichotomous systems change if these conditions are dropped?

In accordance with the preceding, let us introduce two more definitions.

Definition 1.2. A system in Mn is said to be weakly exponentially dichotomous on the half-line
if there exist positive constants ν1 and ν2 and a decomposition of the space Rn of initial data (at
t = 0) into a direct sum of subspaces L− and L+ (the case of zero dimension of the subspaces not
being excluded) such that the solutions x( · ) of the system satisfy the following two conditions:

(1′) if x(0) ∈ L−, then ∥x(t)∥ 6 c1(x)e
−ν1(t−s)∥x(s)∥ for all t > s > 0;

(2′) if x(0) ∈ L+, then ∥x(t)∥ > c2(x)e
ν2(t−s)∥x(s)∥ for all t > s > 0.

Here c1(x) and c2(x) are positive constants generally depending (as hinted in their notation)
on the choice of the solution x( · ).

Thus, the definition of weakly exponentially dichotomous systems differs from the definition of
exponentially dichotomous systems only in that the condition for the estimates to be uniform in
the respective constant factors is dropped.

Definition 1.3. A system in Mn is called almost exponentially dichotomous on the half-line if
there exist positive constants c1, c2 and ν1, ν2 and a decomposition of the space Rn of initial data
(at t = 0) into a direct sum of subspaces L− and L+ (the case of zero dimension of the subspaces
not being excluded) such that the solutions x( · ) of the system satisfy the following two conditions:

(1′′) if x(0) ∈ L−, then ∥x(t)∥ 6 c1e
−ν1(t−s)∥x(s)∥ for all t > s > tx;

(2′′) if x(0) ∈ L+, then ∥x(t)∥ > c2e
ν2(t−s)∥x(s)∥ for all t > s > tx.

Here tx is a nonnegative number generally depending (as hinted in their notation) on the choice
of the solution x( · ).

Although conditions (1′′) and (2′′) imply the uniformity of the estimates in the constant factors
c1 and c2, this is true not for all t > s > 0 (as the case for exponentially dichotomous systems) but
only for t > s greater than some tx, which depends on the solution x( · ).

The subspaces L− and L+ from Definitions 1.1–1.3 are called, respectively, stable and unstable
subspaces, and the numbers −ν1 and ν2 from Definitions 1.1–1.3 are called dichotomy exponents.

We denote the class of n-dimensional weakly exponentially dichotomous systems by WEn and the
class of n-dimensional almost exponentially dichotomous systems by AEn, with CWEn and CAEn
being their respective subclasses consisting of systems whose coefficient matrices are continuous on
the half-line. We have the relations E1 = AE1 = WE1. The class WEn was introduced in paper [6],
in which the authors used the constructions in [3] to prove that, in particular, for n > 2 one has
the proper inclusion En ⊂ WEn. Inclusion AEn ⊂ WEn is obvious (that AEn ̸= WEn if n > 2 is
stated below).



REPORTS OF QUALITDE, Volume 1, 2022 33

2 Main results
Lemma. If the system is weakly exponentially dichotomous, then its stable subspaces L− is uniquely
determined and coincides with subspace ZA of initial (at t = 0) vectors of solutions vanishing at
infinity, and the subspaces L+ can be selected to be any subspaces complementing the subspace L−
to Rn.

A linear subspace of the space X (A) is called lineal. If L is a linear subspace of Rn, then by
L(A; · ) we denote the lineal formed by solutions of the system A ∈ Mn with initial (at t = 0)
vectors from the subspace L; herewith L(A; t) is a linear subspace of Rn, formed by the vectors
x(t) of those solutions x( · ), for which x(0) ∈ L. The lineals L−(A; · ) and L+(A; · ) of the system
A ∈ WEn are called stable and unstable lineals, respectively. For each t > 0, the subspaces L−(A; t)
and L+(A; t) disjoint, i.e. L−(A; t) ∩ L+(A; t) = {0}.

By AEm
n and WEm

n we denote the subclasses of the classes AEn and WEn, respectively, consisting
of systems that have the dimension of their subspace L− equal to m (0 6 m 6 n), by CAEm

n and
CWEm

n we denote those subclasses of the classes AEm
n and WEm

n , respectively, whose coefficients
are continuous. By lemma, classes WEm

n , m = 0, n, are pairwise disjoint (WEm1
n ∩WEm2

n = ∅ if
m1 ̸= m2); i.e., WEn =

n⊔
m=0

WEm
n . Since AEm

n = WEm
n ∩ AEn, it follows that the classes AEm

n ,

m = 0, n, are disjoint as well. Moreover, we have the obvious inclusions Em
n ⊂ AEm

n ⊂ WEm
n and

CEm
n ⊂ CAEm

n ⊂ CWEm
n m = 0, n, where Em

n is the subclass of En consisting of systems that have
the dimension of their subspace L− equal to m (0 6 m 6 n), and CEm

n is a subclass of the class
Em
n , whose systems have continuous coefficients.

In [2] the following theorem was proved.
Theorem 2.1.

(1) For (n,m) = (1, 0), (n,m) = (1, 1) and (n,m) = (2, 1), we have the relations Em
n = AEm

n =
WEm

n .

(2) For the remaining pairs (n,m) of integer n ∈ N and 0 6 m 6 n, the proper inclusions Em
n ⊂

AEm
n ⊂ WEm

n hold and, moreover, there are the proper inclusions CEm
n ⊂ CAEm

n ⊂ CWEm
n .

Since the definitions of the classes of weakly and almost dichotomous systems are quite close
to the definition of the class of exponentially dichotomous systems, then, despite the result of
Theorem 2.1, it seems plausible that the main properties of weakly exponentially dichotomous
systems differ slightly from the properties of exponentially dichotomous systems. The report shows
that this natural assumption is generally wrong.

Let us present the main properties of exponentially dichotomous systems.
(a) Recall that some property of points in a metric space is called rough in this space if the points

possessing it form an open set. It is well known (see, for example, [9, p. 260]) that in the
metric space (Mn, distu) with metric distu(A,B) = sup

t>0
∥A(t)−B(t)∥ of uniform convergence

on the half-line the property of a system to be exponentially dichotomous is rough, i.e. the
set En is open in the space (Mn,distu). We also recall that the edge of a set in the topological
space is called the set-theoretic difference between this set and its interior.

(b) If the system A is exponentially dichotomous, then the conjugate to it system −A� is also
exponentially dichotomous; moreover, if A ∈ Em

n and −ν1, ν2 are dichotomy exponents of the
system A, then −A� ∈ En−m

n and −ν2, ν1 are dichotomy exponents of the system −A�. The
above statement about systems, which are conjugate to exponentially dichotomous systems,
follows easily, for example, from [15, p. 14, Theorem 1.1]. In particular, the class En of
exponentially dichotomous systems is invariant under conjugation.
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(c) For a system A ∈ En, n > 2, let us consider its a stable lineal L−(A; · ) and an unstable
lineal L+(A; · ) (we assume that both of them are different from the zero lineal). As noted
above, for every t ∈ R+ the subspaces L−(A; t) and L+(A; t) are disjoint, so for every t > 0
the inequality ∠{L−(A; t), L+(A; t)} > 0 hold. It is well known (see, for example, [15, p. 10,
Lemma 1.1]) that

inf
t> 0

∠
{
L−(A; t), L+(A; t)

}
> 0, (2.1)

i.e. for stable and unstable lineals of exponentially dichotomous systems, the angles be-
tween their corresponding subspaces are separated from zero on a half-line. Note that some
strengthening of property (2.1) for exponentially dichotomous systems was established in [7].

Property (2.1) of finite-dimensional exponentially dichotomous systems is so important that
when generalizing [9, p. 233–234], [4, p. 131] the concept of exponential dichotomy on linear differ-
ential systems in a Banach space, in order to preserve the main features of the theory, this property
has to be included in the definition of exponentially dichotomous systems in Banach spaces as an
independent condition.

The listed above properties of the class of exponentially dichotomous systems: roughness, in-
variance under the conjugation operation, and separation of the angles between the stable and any
unstable lineals of solutions, do not hold for classes of weakly and almost exponentially dichotomous
systems, as the following theorems show.

Theorem 2.2. For any integer n > 2 in the metric space Mn with the topology of uniform
convergence on the half-line, the interior of the set of weakly (almost) exponentially dichotomous
systems coincides with the set of exponentially dichotomous systems, i.e., intWEn = En (respectively
intAEn = En) for any n > 2.

Theorem 2.2 and some simple considerations imply the following corollary.

Corollary. In a metric space Mn, n > 2, with the topology of uniform convergence on the half-
line, the set WEn (the set AEn) is neither open nor closed, all its points is limit points, and its
edge edWEn (edAEn) are exactly weakly (almost) exponentially dichotomous systems that are not
exponentially dichotomous.

This corollary, in particular, shows that the properties of a system to be weakly or almost
exponentially dichotomous are not rough.

Theorem 2.2 and the corollary remain valid if the space Mn in them is replaced by its subspace
CMn, and the subsets WEn, AEn, and En by the subsets CWEn, CAEn, and CEn, respectively.

The non-invariance of the classes WEn and AEn, if n > 2, under conjugation is stated by the
following theorem.

Theorem 2.3. For any n > 2 there exists a continuous n-dimensional a weakly (almost) expo-
nentially dichotomous system such that its conjugate system is not weakly (almost) exponentially
dichotomous.

In the general case, the non-separation from zero of the angle between the stable L−( · ) and
some unstable L+( · ) lineals of a weakly (almost) exponentially dichotomous system is established
by the following theorem.

Theorem 2.4. For any integer n > 3 and 1 6 m 6 n− 1 in the class CAEm
n there exists a system

such that the angle between its stable lineal L−( · ) and some unstable lineal L+( · ) is not separated
from zero, i.e. inf

t> 0
∠
(
L−(t), L+(t)

)
= 0.
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Note that the restrictions n > 3 and 1 6 m 6 n − 1 in the statement of Theorem 2.4 are
essential: if m is equal to 0 or n, then one of the lineals L−( · ) or L+( · ) is zero and the angle
∠
(
L−(t), L+(t)

)
is undefined; if n = 2, then for m = 1 the system is exponentially dichotomous,

which means that Theorem 2.4 is not true for it.
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1 Introduction. Statement of the problem
For a given positive integer n, let Mn denote the class of linear differential systems

ẋ = A(t)x, x ∈ Rn, t ∈ R+
def
= [0,+∞), (1.1)

with piecewise continuous and bounded on the half-line R+ coefficient matrices A( · ) : R+ → Rn×n.
In what follows, we identify system (1.1) with its coefficient matrix and hence write A ∈ Mn. For
a system A ∈ Mn, let λ1(A) 6 · · · 6 λn(A) denote its Lyapunov exponents [7, p. 567], [5, p. 6],
es(A) its exponential stability index, i.e., the dimension of the linear subspace of solutions to system
(1.1) that have negative Lyapunov exponents, and σL(A) its Lyapunov irregularity coefficient [7,
p. 563], [5, p. 10], i.e., the quantity

σL(A)
def
=

n∑
i=1

λi(A)− lim
t→+∞

1

t

t∫
0

trA(τ) dτ,

tr being the trace of a matrix. By virtue of the Lyapunov inequality [7, p. 562], the quantity σL(A)
is nonnegative.

The Lyapunov irregularity coefficient is one of the most important asymptotic characteristics of
systems in the class Mn. The condition σL(A) = 0 singles out in Mn the subclass Rn of Lyapunov
regular systems, historically the first class of systems for which the problem of conditional stability
by the first approximation was solved in the affirmative [7, p. 578]. Moreover, this coefficient is used
to state sufficient conditions characterizing the response of a system A ∈ Mn to both exponentially
decaying linear perturbations and higher-order nonlinear perturbations. For example, the Lyapunov
exponents of a system A ∈ Mn are preserved under linear exponentially decaying perturbations
Q( · ), whenever the estimate ∥Q(t)∥ 6 C exp(−σt), t ∈ R+, holds with some constants C > 0
and σ > σL(A) [3]. If for a higher-order perturbation f(t, x) (∥f(t, x)∥ 6 const∥x∥m, t ∈ R+,
m = const > 1) of a system A ∈ Mn its order m > 1 satisfies the estimate (m−1)λn(A)+σL(A) < 0,
then the trivial solution of the perturbed system is stable (the Lyapunov–Massera theorem [7,
pp. 578–579], [8]).

It was a long-standing conjecture that the Lyapunov exponents of Lyapunov regular systems
are invariant under perturbations vanishing at infinity. The conjecture was based essentially on the
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fundamental result by Lyapunov which claims that if a nonlinear system (with natural restrictions
on the right-hand side) has a regular first approximation system and the latter is conditionally
exponentially stable, then so is the zero solution of the original system (with the same dimension
of the stable manifold and asymptotic exponent) [7, pp. 576–578]. Nevertheless, in the paper [10]
R. È. Vinograd provided an example of systems A,B ∈ R2 satisfying

λ1(A) = λ2(A) = 0, λ1(B) = −1, λ2(B) = 1, lim
t→+∞

∥A(t)−B(t)∥ = 0.

From this result it follows, in particular, that the exponential stability index es( · ) – a function
taking exactly n+ 1 values – is not upper semicontinuous even on the set Rn of Lyapunov regular
systems with the topology of uniform convergence of coefficients on the semiaxis.

Let M be a metric space. Consider a family

ẋ = A(t, µ)x, x ∈ Rn, t ∈ R+, (1.2)

of linear differential systems depending on a parameter µ ∈ M such that for each µ ∈ M the
matrix-valued function A( · , µ) : R+ → Rn×n is continuous and bounded (for every µ, generally, by
a different constant). Therefore, fixing a value of the parameter µ ∈ M in family (1.2) we obtain
a linear differential system with continuous coefficients bounded on the semiaxis. We denote by
es(µ;A) its exponential stability index and by σL(µ;A) its Lyapunov irregularity coefficient.

It is customary to consider a family of matrix-valued functions A( · , µ), µ ∈ M, under one of
the following two natural assumptions: that the family is continuous either a) in the compact-
open topology, or b) in the uniform topology. The condition a) is equivalent to the fact that
if a sequence (µk)k∈N of points from M converges to a point µ0, then the sequence of functions
A(t, µk) of the variable t ∈ R+ converges to the function A(t, µ0) as k → +∞ uniformly on each
segment [0, T ] ⊂ R+, while the condition b) is equivalent to the fact that this convergence is
uniform over the whole semiaxis R+. Denote the class of families (1.2) that are continuous in
the compact-open topology by Cn(M) and the class of those that are continuous in the uniform
topology by Un(M). It is clear that a proper inclusion Un(M) ⊂ Cn(M) holds. In the sequel, we
will identify families (1.2) with the matrix-valued functions A( · , · ) defining them and therefore
write A ∈ Cn(M) or A ∈ Un(M).

Along with the class Un(M) we consider its subclass UZn
R(M), which is defined as follows. For

a number n ∈ N and a metric space M , denote by Zn(M) the class of jointly continuous matrix-
valued functions Q( · , · ) : R+ ×M → Rn×n that vanish at infinity uniformly over µ ∈ M (the last
means that sup

µ∈M
∥Q(t, µ)∥ → 0 as t → +∞). The class UZn

R(M) comprises families

ẋ = (B(t) +Q(t, µ))x, x ∈ Rn, t ∈ R+, (1.3)

where B ∈ Rn and Q ∈ Zn(M). Denoting the coefficient matrix of family (1.3) by A(t, µ) and, as
above, identifying it with the family itself, we will write A ∈ UZn

R(M).

Problem. For any n ∈ N and metric space M obtain a complete function-theoretic description for each
of the function classes:

T
[
Cn(M)

] def
=

{(
σL( · ;A), es( · ;A)

)
: A ∈ Cn(M)

}
,

T
[
Un(M)

] def
=

{(
σL( · ;A), es( · ;A)

)
: A ∈ Un(M)

}
,

T
[
UZn

R(M)
] def
=

{(
σL( · ;A), es( · ;A)

)
: A ∈ UZn

R(M)
}
.
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2 Preceding results
Let us recall that a function f : M → R is said [4, pp. 266–267] to be of the class ( ∗, Gδ) if for
each r ∈ R, the preimage f−1([r,+∞)) of the half-interval [r,+∞) is a Gδ-set of the metric space
M . In particular, the class ( ∗, Gδ) is a proper subclass of the second Baire class [4, p. 294]. Recall
also that a function m : M → R is called a majorant of a function f : M → R if f(x) ≤ m(x) for
all x ∈ M .

A complete description of the classes

S[Un(M)]
def
=

{
σL( · ;A) : A ∈ Un(M)

}
and S[UZn

R(M)]
def
=

{
σL( · ;A) : A ∈ UZn

R(M)
}
,

i.e., the classes made up of the first elements of pairs in the classes T[Un(M)] and T[UZn
R(M)],

respectively, is obtained in the paper [2] and is as follows: the classes S[Un(M)] and S[UZn
R(M)]

coincide with one another and consist of functions M → R+ of the class ( ∗, Gδ) that have a
continuous majorant.

A description of the class S[Cn(M)]
def
= {σL( · ;A) : A ∈ Cn(M)} follows from the result of the

paper [8]: for any n ∈ N and metric space M the class S[Cn(M)] consists of all functions M → R+

of the class ( ∗, Gδ). This description can also be immediately drawn from a more general result
obtained in the paper [11], which is a complete description of the class {(σL( · ;A), σP( · ;A)) : A ∈
Cn(M)} of vector functions composed of the Lyapunov irregularity coefficient σL and the Perron
one σP [2, p. 10] for families in Cn(M): for any n ≥ 2 and metric space M a vector function
(σ1, σ2) : M → R2

+ belongs to the above mentioned class if and only if the functions σ1 and σ2 are
( ∗, Gδ) and for all µ ∈ M , the inequalities 0 6 σ2(µ) 6 σ1(µ) 6 nσ2(µ) hold. (Recall that the
Perron irregularity coefficient σP(A) of a system A ∈ Mn is defined by the equality

σP(A)
def
= max

1≤i≤n

{
λi(A) + λn−i+1(−AT )

}
;

σP( · ;A) stands for the Perron irregularity coefficient of family (1.2).)
A description of the classes {es( · ;A) : A ∈ Cn(M)} and {es( · ;A) : A ∈ Un(M)} is obtained

in the paper [1]: both classes consist of functions f : M → {0, . . . , n} such that the function (−f)
is of the class ( ∗, Gδ).

3 The main result
Theorem 3.1. For any n ≥ 1 and metric space M a pair of functions (σ, s), where σ : M → R+

and s : M → {0, . . . , n}, belongs to the class T[Cn(M)] if and only if the functions σ and (−s) are
of the class ( ∗, Gδ).

Unfortunately, the authors of the report failed to completely solve the above stated problem on
description of the classes T[Un(M)] and T[UZn

R(M)]. Below we consider a simplified version of the
problem.

Following the report [9], which treats an analogous quantity, we call the indicator of total
exponential instability of system (1.1) the quantity ti(A) defined by

ti (A) =

{
1, if λ1(A) ≥ 0,

0, otherwise.

The next theorem completely describes the classes of pairs of functions

U
[
Un(M)

] def
=

{(
σL( · ;A), ti( · ;A)

)
: A ∈ Un(M)

}
,

U
[
UZn

R(M)
] def
=

{(
σL( · ;A), ti( · ;A)

)
: A ∈ UZn

R(M)
}
.



REPORTS OF QUALITDE, Volume 1, 2022 39

Theorem 3.2. For any n ≥ 2 and metric space M the equality U[Un(M)] = U[UZn
R(M)] is valid.

A pair of functions (σ, t), where σ : M → R+ and t : M → {0, 1}, belongs to the above defined
classes if and only if the functions σ and t are of the class ( ∗, Gδ) and the function σ has a
continuous majorant.
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The differential equation

y′′ = α0p(t)φ0(y)φ1(y
′) exp(R(| ln |yy′||)), (1)

where α0 ∈ {−1, 1}, p : [a, ω[→ ]0,+∞[ (−∞ < a < ω ≤ +∞), φi : ∆Yi → ]0,+∞[ are continuous
functions, Yi ∈ {0,±∞} (i = 0, 1), ∆Yi is a onesided neighborhood of Yi, every function φi(z) (i =
0, 1) is a regularly varying function as z → Yi (z ∈ ∆Yi) of order σi, σ0 + σ1 ̸= 1, σ1 ̸= 0, the
function R : ]0,+∞[→ ]0,+∞[ is continuously differentiable and regularly varying on infinity of
the order µ, 0 < µ < 1, the derivative function of the function R is monotone, is considered in the
work.

Definition. The solution y of equation (1) is called Pω(Y0, Y1, λ0) if it is defined on [t0, ω[⊂ [a, ω[
and

lim
t↑ω

y(i)(t) = Yi (i = 0, 1), lim
t↑ω

(y′(t))2

y(t)y′′(t)
= λ0.

A lot of works (see, for example, [2, 3]) have been devoted to the establishing asymptotic
representations of Pω(Y0, Y1, λ0)-solutions of equations of the form (1), in which R ≡ 0. The
Pω(Y0, Y1, λ0)-solutions of equation (1) are regularly varying functions as t ↑ ω of index λ0

λ0−1 if
λ0 ∈ R \ {0, 1}. The asymptotic properties and necessary and sufficient conditions of existence of
such solutions of equation (1) have been received in [1].

The case λ0 = 0 is one of cases of the most difficulty because in this cases such solutions
are slowly varying functions as t ↑ ω. Some results about asymptotic properties and existence of
Pω(Y0, Y1, λ0)-solutions of equation (1) in this special case are presented in the work.

We say that a slowly varying as z → Y (z ∈ ∆Y ) function θ : ∆Y → ]0,+∞[ satisfies the
condition S, if for any continuous differentiable function L : ∆Yi → ]0,+∞[ such that

lim
z→Yi
z∈∆Yi

zL′(z)

L(z)
= 0,

the next equality

Θ(zL(z)) = Θ(z)(1 + o(1)) is true as z → Y (z ∈ ∆Y )

holds.
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We need the next subsidiary notations

πω(t) =

{
t as ω = +∞,

t− ω as ω < +∞,
Θi(z) = φi(z)|z|−σi (i = 0, 1),

I(t) = α0

t∫
Aω

p(τ)dτ, Aω =


a, if

ω∫
a

p(τ) dτ = +∞,

ω, if
ω∫

a

p(τ) dτ < +∞.

In the case
lim
t↑ω

sign y10
|πω(t)|

= Y1,

we put

J(t) =

t∫
Bω

∣∣∣I(τ)Θ1

(sign y10
|πω(t)|

)∣∣∣ 1
1−σ1 dτ,

Bω =


b, if

ω∫
b

∣∣∣I(τ)Θ1

(sign y10
|πω(t)|

)∣∣∣ 1
1−σ1 dτ = +∞,

ω, if
ω∫
b

∣∣∣I(τ)Θ1

(sign y10
|πω(t)|

)∣∣∣ 1
1−σ1 dτ < +∞,

N(t) =
(1− σ1)I(t)|(1− σ1)I(t)Θ1(

y01
|πω(t)|)|

1
σ1−1

I ′(t)R′(| ln |πω(t)||)
.

Theorem 1. Let in equation (1) the function φ1(y
′) satisfy the condition S and the next condition

take place

lim
t↑ω

R(| ln |πω(t)||)J(t)
πω(t) ln |πω(t)|J ′(t)

= 0. (2)

Then for the existence of Pω(Y0, Y1, 0)-solutions of equation (1) the next conditions are necessary
and sufficient

lim
t↑ω

y00|J(t)|
1−σ1

1−σ0−σ1 = Y0, lim
t↑ω

J ′(t)

y01|J(t)|
= Y1, lim

t↑ω

πω(t)I
′(t)

I(t)
= σ1 − 1,

I(t)

y01(1− σ1)
> 0 as t ∈ ]a, ω[ ,

y00y
0
1(1− σ1)J(t)

1− σ0 − σ1
> 0 as t ∈ ]b, ω[ .

For such solutions the next asymptotic representations take place as t ↑ ω:

y(t)

| exp(R(| ln |y(t)y′(t)||))φ0(y(t))|
1

1−σ1

=
1− σ0 − σ1

1− σ1
|1− σ1|

1
1−σ1 J(t)[1 + o(1)],

y(t)

y′(t)
=

(1− σ0 − σ1)J(t))

(1− σ1)J ′(t)
[1 + o(1)].
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Theorem 2. Let in Theorem 1 condition (2) do not hold but the function φ1 satisfy the condition
S, p be a twice continuously differentiable function, and the next condition takes place

lim
t↑ω

πω(t)N
′(t)

R′(| ln |πω(t)||)N(t)
= 0.

Then for the existence of Pω(Y0, Y1, 0)-solutions of equation (1), for which there exists a finite or
infinite limit lim

t↑ω
πω(t)y′′(t)

y′(t) , the next conditions are necessary and sufficient

lim
t↑ω

y00 exp
(
R(| ln |πω(t)||)

) σ1−1
1−σ0−σ1 = Y0, lim

t↑ω

−α0

πω(t)
= Y1, lim

t↑ω

πω(t)I
′(t)

I(t)
=

σ1 − 1

α0
,

α0y
0
1πω(t) < 0, α0(1− σ1)(1− σ0 − σ1)y

0
0R

′(| ln |πω(t)||) > 0.

For such solutions the next asymptotic representations take place as t ↑ ω:

y(t)

|φ0(y(t)) exp(R(| ln |y(t)y′(t)||))|
1

1−σ1

=
1− σ0 − σ1

1− σ1
N(t)[1 + o(1)],

y′(t)

y(t)
=

I ′(t)R′(| ln |πω(t)||)
(1− σ0 − σ1)(1− σ1)I(t)

[1 + o(1)].

Theorem 3. Let in Theorem 1 conditions (2) do not hold but the function φ1 satisfy the condition
S, p be a twice continuously differentiable function, and the next condition takes place

lim
t↑ω

πω(t)N
′(t)

R′(| ln |πω(t)||)N(t)
= M ∈ R \ {0, 1}.

Then for the existence of Pω(Y0, Y1, 0)-solutions of equation (1), for which there exists a finite or
infinite limit lim

t↑ω
πω(t)y′′(t)

y′(t) , the next conditions are necessary and sufficient

lim
t↑ω

y00
(
exp(R(| ln |πω(t)||))

) σ1−1
1−σ0−σ1 = Y0, lim

t↑ω

−α0

πω(t)
= Y1, lim

t↑ω

πω(t)I
′(t)

I(t)
=

σ1 − 1

α0
,

α0y
0
1πω(t) < 0, α0(1−M)(1− σ1)(1− σ0 − σ1)y

0
0R

′(| ln |πω(t)||) > 0.

For such solutions the next asymptotic representations take place as t ↑ ω:

y(t)

|φ0(y(t)) exp(R(| ln |y(t)y′(t)||))|
1

1−σ1

=
1− σ0 − σ1

(1− σ1)(1−M)
N(t)[1 + o(1)],

y′(t)

y(t)
=

I ′(t)R′(| ln |πω(t)||)(1−M)

(1− σ0 − σ1)(1− σ1)I(t)
[1 + o(1)].

Let consider some more specific class of differential equations of the form (1) and use Theorems 1,
2 and 3. The differential equation

y′′ = mtσ1−2 exp(k lnγ t)|y|σ0 |y′|σ1 exp
(
(| ln |yy′||)µ

)
(3)

on the interval [t0,+∞[ (t0 > 0), where m ∈ ] − ∞, 0[ , k ∈ ]0,+∞[ , γ, µ ∈ ]0; 1[ , σ0, σ1 ∈ R,
σ0 + σ1 ̸= 1, σ1 ̸= 1, is the equation of the form (1), where

α0 = signm = −1, p(t) = mtσ1−2 exp(k lnγ t), φ0 = |y|σ0 , φ1 = |y|σ1 , R(z) = zµ.

This function φ1 satisfies the condition S. Let consider the case when ω = Y0 = Y1 = +∞.
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Using Theorem 1 we obtain that if µ−γ < 0, then for the existence P+∞(+∞,+∞, 0)-solutions
of equation (3) the following condition

1− σ0 − σ1 > 0 (4)

is necessary and sufficient.
Moreover, for each such solution the following asymptotic representations take place as t → +∞:

y
1−σ0−σ1

1−σ1 exp
( | ln |y(t)y′(t)||µ

σ1 − 1

)
=

1− σ0 − σ1
γk

exp
( k lnγ t

1− σ1

)
ln1−γ t[1 + o(1)],

y(t)

y′(t)
=

(1− σ0 − σ1)γk

(1− σ1)2
lnγ−1 t

t
[1 + o(1)].

Let us now consider the case µ− γ > 0. In this case by Theorem 2 we obtain that for µ− γ > 0
for existence of P+∞(+∞,+∞, 0)-solutions to equation (3) condition (4) is necessary and sufficient.
Moreover, each such solution satisfies the next asymptotic representations as t → +∞:

y
1−σ0−σ1

1−σ1 exp
( | ln |y(t)y′(t)||µ

σ1 − 1

)
=

1− σ0 − σ1
µ(1− σ1)

exp
( k lnγ t

1− σ1

)
ln1−µ t[1 + o(1)],

y′(t)

y(t)
=

µ

σ0 + σ1 − 1
tσ1−2 lnγ−1 t[1 + o(1)].

Let us now consider the case µ = γ. By Theorem 3 we obtain that for existence of P+∞(+∞,+∞, 0)-
solutions to equation (3) condition (4) together with the condition

(1− σ1 − k)(1− σ1) > 0

is necessary and sufficient. Moreover, each such solution satisfies the next asymptotic representa-
tions as t → +∞:

y
1−σ0−σ1

1−σ1 exp
( | ln |y(t)y′(t)||µ

σ1 − 1

)
=

1− σ0 − σ1
µ(1− σ1 − k)

exp
( k lnγ t

1− σ1

)
ln1−µ t[1 + o(1)],

y′(t)

y(t)
=

µ(1− σ1 − k)

(σ0 + σ1 − 1)(1− σ1)
tσ1−2 lnγ−1 t[1 + o(1)].
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The study of the linear differential-algebraic boundary value problems is connected with numer-
ous applications of corresponding mathematical models in the theory of nonlinear oscillations, me-
chanics, biology, radio engineering, the theory of the motion stability. Thus, the actual problem is
the transfer of the results obtained in the articles and monographs of S. Campbell, A. M. Samoilenko
and O. A. Boichuk on the nonlinear boundary value problems to the integro-differential boundary
value problem of Fredholm type not solved with respect to the derivative, in particular, finding
the necessary and sufficient conditions of the existence of the desired solutions of the nonlinear
integro-differential boundary value problem not solved with respect to the derivative with delay.
We found the conditions of the existence and constructive scheme for finding the solutions of the
nonlinear integro-differential boundary value problem not solved with respect to the derivative with
delay.

We investigate the problem of finding solutions [3]

y(t) ∈ D2[0, T ], y′(t) ∈ L2[0, T ]

of the linear Noetherian (n ̸= υ) boundary value problem for a system of linear integro-differential
equations of Fredholm type not solved with respect to the derivative with delay [1, 3, 10]

A(t)y′(t) = B(t)y(t) + C(t)y(h(t)) + Φ(t)

T∫
∆

F (y(s), y(h(s)), y′(s), s) ds+ f(t), (1)

y(t) = φ(t) ∈ C1[0,∆], ℓy( · ) = α, α ∈ Rυ. (2)

We seek a solution of the boundary value problem (1), (2) in a small neighborhood of the solution

y0(t) ∈ D2[0, T ], y′0(t) ∈ L2[0, T ]

of the Noetherian generating problem

A(t)y′0(t) = B(t)y0(t) + C(t)y(h(t)), ℓy0( · ) = α (3)

in the case when the matrix A(t) has a variable rank in [∆, T ]. Here

A(t), B(t) ∈ L2
m×n[0, T ] := L2[0, T ]⊗ Rm×n, Φ(t) ∈ L2

m×q[0, T ],

f(t) ∈ L2[0, T ], h(t) : [∆, T ] → [0,∆].
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We assume that the matrix A(t) is, generally speaking, rectangular: m ̸= n. Nonlinear vector-
function F (y(t), y(h(t)), y′(t), t) is twice continuously differentiable with respect to the unknowns
y(t) and with respect to the derivative y′(t) in a small neighborhood of the solution

y0(t) ∈ C[0, T ], y0(t) ∈ D2[0;T ], y′0(t) ∈ L2[∆;T ], T := (q + 1)∆, q ∈ N

to the generating problem (3);
ℓy( · ) : D2[0, T ] → Rp

is a linear bounded vector functional defined on a space D2[0, T ]. The problem of finding solutions
of the boundary value problem (1), (2) in case A(t) = In was solved by A. M. Samoilenko and
A. A. Boichuk [11]. Thus, the boundary value problem (1), (2) is a generalization of the problem
solved by A. M. Samoilenko and A. A. Boichuk and also is a generalization of the Noetherian
boundary value problems for systems of differential-algebraic equations [4, 7, 8].

Solution of the generating problem (3) can be determined as solution of the problem

A(t)y′0(t) = B(t)y0(t) + g(t), g(t) := C(t)φ(h(t)) + f(t). (4)

Let the differential-algebraic system (4) with the constant-rank matrix A(t) satisfy the conditions
of the theorem from the paper [7, p. 15]. Then, in the case of the p-order degeneration, the
differential-algebraic system (4) has a solution which can be written in the form

y0(t, cρp−1) = Xp(t)cρp−1 +K
[
g(s), νp(s)

]
(t), t ∈ [∆;T ], cρp−1 ∈ Rρp−1 .

There K[g(s), νp(s)](t) is generalized Green’s operator of the Cauchy problem for the differential-
algebraic system (4) where νp(t) is an arbitrary continuous vector function. Substituting the general
solution of the Cauchy problem for the differential-algebraic system (4), namely,

y0(t) := K∆

[
f(s), φ(s), νp(s)

]
(t), t ∈ [∆;T ]

into the boundary condition (1), we arrive at the linear algebraic equation

PX∗
p
(∆)

{
φ(∆)−K

[
g(s), νp(s)

]
(∆)

}
= 0, (5)

where PX∗
p
(∆) is an orthoprojector,

K∆

[
f(s), φ(s), νp(s)

]
(t)

:= Xp(t)X
+
p (∆)

{
φ(∆)−K

[
g(s), νp(s)

]
(∆)

}
+K

[
g(s), νp(s)

]
(t), t ∈ [∆;T ].

Linear bounded vector functional ℓy( · ) present in the form

ℓy( · ) = ℓ0y( · ) + ℓ1y( · ) : C[0;T ] → Rυ,

where

ℓ0y( · ) :=
∆∫
0

dW (t) y(t) : C[0;∆] → Rυ, ℓ1y( · ) :=
T∫

∆

dW (t) y(t) : C[∆;T ] → Rυ;

W (t) is an (υ × n) matrix whose entries are functions of bounded variation on [0, T ], and the
integral used to represent linear functionals is understood in the Riemann–Stieltjes sense [3]. Let
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the differential-algebraic system (4) with the constant-rank matrix A(t) satisfy the conditions of
the theorem from the paper [7, p. 15]. Only if condition

ℓ0 φ( · ) + ℓ1K∆

[
f(s), φ(s), νp(s)

]
( · ) = α

is satisfied, the general solution of the differential-algebraic system (4)

y0(t) = G
[
f(s), φ(s);α

]
(t), t ∈ [∆;T ]

determines the solution of the nonlinear differential-algebraic boundary-value problem (1), (2),
where [7]

G[f(s), φ(s);α](t) := K∆

[
f(s), φ(s), νp(s)

]
(t), t ∈ [∆;T ].

We found the conditions of the existence and constructive scheme for finding the solutions of
the nonlinear integro-differential boundary value problem (1), (2) not solved with respect to the
derivative with delay.

Conditions for the solvability of the linear boundary-value problem for systems of differential-
algebraic equations (3) with the variable rank of the leading-coefficient matrix and the correspond-
ing solution construction procedure have been found in the paper [9]. In the case of nonsolvability,
the nonsingular integro-differential boundary value problems can be regularized analogously [6,12].

The proposed scheme of studies of the nonlinear integro-differential boundary value problems
of Fredholm type not solved with respect to the derivative with delay (1), (2) is a generalization of
the Noetherian boundary-value problems for systems of differential-algebraic equations [2,4,5,7–9].
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In the space C[a, b], −∞ < a < b < +∞, we consider a linear boundary-value problem for the
system of fractional differential equations

CDα
a+x(t) = A(t)x(t) + f(t), (1)
lx( · ) = q, (2)

where CDα
a+ is the left Caputo fractional derivative of order α (0 < α < 1) [6, 7, 14]

CDα
a+x(t) =

1

Γ(m− α)

t∫
a

x(m)(s)

(t− s)α−m+1
ds,

A(t) is an (n× n)-matrix and f(t) is an n-vector, whose components are real functions continuous
on [a, b], l = col(l1, l2, . . . , lp) : C[a, b] → Rp is bounded linear vector functional, lν : C[a, b] → R,
ν = 1, p, q = col(q1, q2, . . . , qp) ∈ Rp.

Using the results [1,2,5,15], obtained as a generalization of the classical methods of the theory
of periodic boundary-value problems in the theory of oscillations (see [10–13]), we consider the
questions of finding necessary and sufficient conditions of solvability and determine a general form
of solutions of the boundary-value problem for the systems of fractional differential equations (1),
(2). Let us first consider the general solution of system (1) of the form

x(t) = X(t)c+ x(t) ∀ c ∈ Rn, (3)

where X(t) is the fundamental solution (n × n)-matrix of the homogeneous system (1) (f = 0),
whose column vectors constitute a fundamental system of solutions to the homogeneous system (1)
and x(t) is an arbitrary special solution of the inhomogeneous system (1). The required special
solution x(t) can be chosen as a solution of the system of linear Volterra integral equation of the
second kind

x(t) = g(t) +

t∫
a

K(t, s)x(s) ds, (4)

g(t) =
1

Γ(α)

t∫
a

f(s)

(t− s)γ
ds, K(t, s) =

A(s)

Γ(α)(t− s)γ
, (5)

0 < γ = 1− α < 1.
The solution of the system of equations (4) can be found by different methods. We apply the

approach described in [3,4]. In the Hilbert space L2[a, b], we show that system (4) with unbounded
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kernel K(t, s) (5) can be reduced to an equivalent system with square summable kernel. To do this,
we consider iterated kernels Km(t, s), m ∈ N, given by the recurrence relations

Km+1(t, s) =

t∫
s

K(t, ξ)Km(ξ, s) dξ, K1(t, s) = K(t, s).

The iterated kernels Km(t, s) have the same structure as weakly singular kernel K(t, s) (5) but
the number γ is replaced with the number 1−m(1− γ) which is negative for sufficiently large m.
Therefore (see [9, p. 34]), for all m by which the condition

m >
1

2(1− γ)
(6)

is satisfied, the kernels Km(t, s) are square summable.
System (4) can be reduced to a similar system with the kernel Km(t, s)

x(t) = gm(t) +

t∫
a

Km(t, s)x(s) ds, (7)

gm(t) = g(t) +

m−1∑
l=1

t∫
a

Kl(t, s)g(s) ds.

We apply the approach described in [3, 4] to the study of system (7) and show that it can be
reduced to the system

Λz = g, (8)

where the vectors z, g and the block matrix Λ have the form

z = col(x1, x2, . . . , xi, . . . ), g = col(g1, g2, . . . , gi, . . . ),

Λ =


Λ11 Λ12 · · · Λ1i · · ·
Λ21 Λ22 · · · Λ2i · · ·

...
... . . . ...

...
Λi1 Λi2 · · · Λii · · ·
...

... · · ·
... . . .

 , Λij =

{
In −Aij , if i = j;

−Aij , if i ̸= j,

xi =

b∫
a

x(t)φi(t) dt, gi =

b∫
a

gm(t)φi(t) dt, (9)

Aij =

b∫
a

t∫
a

Km(t, s)φi(t)φj(s) dt ds, (10)

{φi(t)}∞i=1 is a complete orthonormal system of functions in L2[a, b].
Here, In is the identity matrix of dimensions n, the operator Λ : ℓ2 → ℓ2 appearing on the

left-hand side of the operator equation (8) has the form Λ = I−A, where I : ℓ2 → ℓ2 is the identity
operator and A : ℓ2 → ℓ2 is a compact Volterra operator (see [8]). Hence, PΛ = P ∗

Λ = O, Λ+ = Λ−1.
According to [5], the homogeneous equation (8) (g = 0) possesses a unique solution z = 0 and the
inhomogeneous equation (8) possesses a unique solution of the form z = Λ−1g.
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According to the Riesz–Fischer theorem, one can find an element x ∈ L2[a, b] such that the
quantities xi, i = 1,∞ are the Fourier coefficients of this element. Thus, the following representation
is true:

x(t) =
∞∑
i=1

xiφi(t) = Φ(t)z = Φ(t)Λ−1g, (11)

where
Φ(t) = (φ1(t), φ2(t), . . . φi(t), . . . ).

The element x(t) given by relations (11) is the required solution of system (7).
We now return to the problem on the existence of a solution of the boundary-value problem

(1), (2) and determine a structure of this solution. Substituting (3) in condition (2), we obtain the
following algebraic system for vector c:

Qc = b, (12)

where a (p× n)-matrix Q and a p-vector b having the forms

Q = (lX)( · ), b = q − (l x)( · ). (13)

According to the criterion for solvability of system (12) (see [5, p. 65]), the following assertion
is true.

Theorem. The homogeneous boundary-value problem (1), (2) (f(t) = 0, q = 0) possesses a d2-pa-
rameter family of solutions

x(t) = X(t)PQd2
cd2 ∀ cd2 ∈ Rd2 .

The inhomogeneous boundary-value problem (1), (2) is solvable if and only if d1 linearly independent
conditions

PQ∗
d1
b = 0, d1 = p− rankQ

are satisfied and possesses a d2-parameter family of solutions x ∈ C[a, b] of the form

x(t) = X(t)PQd2
cd2 +X(t)Q+b+ x(t) ∀ cd2 ∈ Rd2 .

Here, PQd2
is an (r×d2)-matrix formed by a complete system of d2 linearly independent columns

of the matrix projector PQ, where PQ is the projector onto the kernel of the matrix Q, Q+ is the
pseudoinverse Moore–Penrose (n×p)-matrix for the matrix Q, and PQ∗

d1
is a (d1×p)-matrix formed

by the complete system of d1 linearly independent rows of the matrix projector PQ∗ , where PQ∗ is
the projector onto the cokernel of the matrix Q.
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There are many papers devoted to the solvability of the Cauchy problem in the non-Volterra
case [1–15]. If the functional operators in the equation don’t satisfy the delay conditions, the
solvability of the Cauchy problem requires some smallness of these functional operators.

We consider the Cauchy problem for functional differential equations with an alternating coef-
ficient {

ẍ(t) = a(t− t0)x(h(t)) + f(t), t ∈ [0, 1],

x(0) = c0, ẋ(0) = c1,
(1)

where a ∈ R, t0 ∈ [0, 1], h : [0, 1] → [0, 1] is a measurable function, f ∈ L[0, 1], c0, c1 ∈ R. We say
that a function x : [0, 1] → R is a solution of problem (1) if x and the derivative ẋ are absolutely
continuous on the interval [0, 1] and x satisfies the functional differential equation of the problem
almost everywhere on [0, 1] and satisfies the initial conditions x(0) = c0 and ẋ(0) = c1.

Using ideas of [8, 9], we obtain necessary and sufficient conditions for the Cauchy problem{
ẍ(t) = (T+x)(t)− (T−x)(t) + f(t), t ∈ [0, 1],

x(0) = c0, ẋ(0) = c1
(2)

to be uniquely solvable for all linear positive operators T+, T− : C[0, 1] → L[0, 1] such that

(T+1 )(t) =

{
a(t− t0) if a(t− t0) ≥ 0,
0, otherwise,

(T−1 )(t) =

{
−a(t− t0) if a(t− t0) < 0,
0, otherwise.

(3)

Here 1 : [0, 1] → R, 1 (t) = 1, is the unit function, C[0, 1] and L[0, 1] are the spaces of all continuous
and integrable functions with the standard norms respectively, an operator is called positive if it
maps each non-negative function into almost everywhere non-negative one.

We also need the following notation.
Let t0∗ ≈ 0, 47 be a solution of the equation

6

t20(3− t0)
=

6

2− 3t0
,

t∗0 ≈ 0, 54 be a solution of the equation

24

(3t0 − 1)2
=

6

(1− t0)3
.
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Denote

q1 = q1(t0, t1, t3) = (t0 − t1)
3 − 3(1− t1)(t0 − t3)

2 + 3t0 − 1,

q2 = q2(t0, t1, t3) = t21(3− t0 − 2t3)(t0 − t3)
2(3t0 − t1)− (3t0 − 1)(t1 − t3)

2(3t0 − t1 − 2t3),

r1 = r1(t0, t1, t3) =
t21(3t0 − t1) + 3(t0 − t3)

2(t1 − 1)

6
,

r2 = r2(t0, t1, t3) =
(t1(t0 + 2t3)(3t0 − t1) + (3t1 − t0 − 2t3)(1 + t1 − 3t0))(t0 − t3)

2(t1 − 1)

36
,

A+(t0) =


6

(1− t0)3
if t0 ∈ [0, t∗0],

min
0<t3≤t1<t0

3(q1 +
√

q21 + 4 q2)

q2
if t0 ∈ (t∗0, 1],

A−(t0) =


min

0<t3≤t1<t0

{
3(r1 −

√
r21 − 4 r2)

r2
,

6

t20(3− t0)

}
if t0 ∈ [0, t0∗),

6

t20(3− t0)
if t0 ∈ [t0∗, 1].

Theorem. Problem (2) is uniquely solvable for all linear positive operator T+, T− : C[0, 1] →
L[0, 1] satisfied conditions (3) if and only if

−A−(t0) < a < A+(t0). (4)

Corollary. Problem (1) is uniquely solvable for every measurable function h : [0, 1] → [0, 1] if and
only if condition (4) holds.

Example. For t0 ∈ [1/5, t∗0], we have

A−(t0) =
6

t20(3− t0)
, A+(t0) =

6

(1− t0)3
.

In particular, the problemẍ(t) = a
(
t− 1

2

)
x(h(t)) + f(t), t ∈ [0, 1],

x(0) = c0, ẋ(0) = c1

is uniquely solvable for every measurable function h : [0, 1] → [0, 1] if and only if

−48

5
< a < 48.
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We consider the following differential equation

y′′ = α0p(t)φ0(y
′)φ1(y). (1)

In this equation the constant α0 is responsible for the sign of the equation, functions p : [a, ω[→
]0,+∞[ (−∞ < a < ω ≤ +∞) and φi : ∆Yi → ]0,+∞[ (i ∈ {0, 1}) are continuous, Yi ∈ {0,±∞},
∆Yi is the some one-sided neighborhood of Yi.

We also suppose that function φ1 is a regularly varying as y → Y1 function of the index
σ1 [7, pp. 10–15], function φ0 is twice continuously differentiable on ∆Y0 and satisfies the next
conditions

φ′
0(y

′) ̸= 0 as y′ ∈ ∆Y0 , lim
y′→Y0

y′∈∆Y0

φ0(y
′) ∈ {0,+∞}, lim

y′→Y0

y′∈∆Y0

φ0(y
′)φ′′

0(y
′)

(φ′
0(y

′))2
= 1. (2)

It follows from conditions (2) that the following statements are true

φ′
0(y

′)

φ0(y′)
∼ φ′′

0(y
′)

φ′
0(y

′)
as y′ ∈ ∆Y0 , lim

y′→Y0

y′∈∆Y0

y′φ′
0(y

′)

φ0(y′)
= ±∞. (3)

Also it follows from the above conditions (3) that the function φ0 and its first-order derivative
are rapidly varying functions as the argument tends to Y0 [1].

So (1) is the second order differential equation that contains in the right-hand side the product
of a regularly varying function of unknown function and a rapidly varying function of the first
derivative of the unknown function.

In the previous works (see, for example [2]) we obtained results for the second order differential
equation containing a rapidly varying function of unknown function and a regularly varying function
of its first derivative.

For equation (1) we consider the following class of solutions.

Definition 1. The solution y of the equation (1), that is defined on the interval [t0, ω[⊂ [a, ω[ , is
called Pω(Y0, Y1, λ0)-solution (−∞ ≤ λ0 ≤ +∞), if the following conditions take place

y(i) : [t0, ω[→ ∆Yi , lim
t↑ω

y(i)(t) = Yi (i = 0, 1), lim
t↑ω

(y′(t))2

y′′(t)y(t)
= λ0.
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In the work we establish the necessary and sufficient conditions for the existence of Pω(Y0, Y1, λ0)-
solutions of the equation (1) in case λ0 = 1 and find asymptotic representations of such solutions
and its first order derivatives as t ↑ ω.

According to the properties of such Pω(Y0, Y1, 1)-solutions (see, for example, [4]) we have that

lim
t↑ω

y′(t)

y(t)
= lim

t↑ω

y′′(t)

y′(t)
,

and

lim
t↑ω

πω(t)y
′(t)

y(t)
= ±∞, πω(t) =

{
t as ω = +∞,

t− ω as ω < +∞,

So we have that each such Pω(Y0, Y1, 1)-solution and its first-order derivative are rapidly varying
functions as t ↑ ω and this case of Pω(Y0, Y1, λ0)-solutions is the most difficult.

Let the solution y of equation (1) is a Pω(Y0, Y1, 1)-solution. Note that the function y(t(y′)),
where t(y′) is an inverse function to y′(t), is a regularly varying function of the index 1 as y′ → Y0
(y′ ∈ ∆Y0).

Indeed, the following statement is true

lim
y′→Y1

y′(y(t(y′)))′

y(t(y′))
= lim

y′→Y1

(y′(t(y′)))2

y(t(y′))y′′(t(y′))
= 1.

Definition 2. Let Y ∈ {0,∞}, ∆Y be some one-sided neighborhood of Y . A continuous-diffe-
rentiable function L : ∆Y →]0;+∞[ is called [6, pp. 2-3] a normalized slowly varying function as
z → Y (z ∈ ∆Y ) if the next statement is true

lim
y→Y
y∈∆Y

yL′(y)

L(y)
= 0.

Definition 3. We say that a slowly varying as z → Y (z ∈ ∆Y ) function θ : ∆Y → ]0;+∞[ satisfies
the condition S as z → Y , if for any continuous differentiable normalized slowly varying as z → Y
(z ∈ ∆Y ) function L : ∆Yi → ]0;+∞[ the next relation is valid

θ(zL(z)) = θ(z)(1 + o(1)) as z → Y (z ∈ ∆Y ).

Definition 4. Let’s define that a slowly varying as z → Y (z ∈ ∆Y ) function L0 : ∆Y → ]0;+∞[
satisfies the condition S1 as z → Y if for any finite segment [a; b] ⊂ ]0;+∞[ the next inequality is
true

lim sup
z→Y
z∈∆Y

∣∣∣ ln |z| · (L(λz)
L(z)

− 1
)∣∣∣ < +∞ for all λ ∈ [a; b].

Note that

Φ0(y
′) = sign y01

y∫
B0

|s|
1

σ1−2φ
1

σ1−2

0 (s) ds, B0 =



y01, if
Y0∫

y10

|s|
1

σ1−2φ
1

σ1−2

0 (s) ds = ±∞,

Y0, if
Y0∫

y01

|s|
1

σ1−2φ
1

σ1−2

0 (s) ds = const,

θ1(z) = φ1(z)|z|−σ1 , Z0 = lim
y′→Y0

y′∈∆Y0

Φ0(y
′), Φ1(y

′) =

y′∫
B0

Φ0(s) ds, Z1 = lim
y′→Y0
y∈∆Y0

Φ1(y),
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I0(t) =

t∫
A0

p
1

2−σ1 (τ) dτ, A0 =


a, if

ω∫
a

p
1

2−σ1 (τ) dτ = +∞,

ω, if
ω∫

a

p
1

2−σ1 (τ) dτ < +∞

in the case lim
t↑ω

I0(t) = Z0 and sign I0(t) = signΦ0(y), let

I1(t) =

t∫
A1

1

Φ−1
0 (I0(τ))))

dτ, A1 =


b, if

ω∫
b

1

Φ−1
0 (I(τ))))

dτ = ±∞,

ω, if
ω∫
b

1

Φ−1
0 (I0(τ))))

dτ = const, b ∈ [a;ω[ ,

I2(t) = −
t∫

A2

(I0(τ)
I1(τ)

)
dτ, A2 =


b, if

ω∫
b

(I0(τ)
I1(τ)

)
dτ = ±∞,

ω, if
ω∫
b

(I0(τ)
I1(τ)

)
dτ = const.

Note 1. The following statements are true:

1)

Φ0(z) = (σ1 − 1)
φ

σ1
σ1−1

0 (z)

φ′
0(z)

[1 + o(1)] as z → Y0 (z ∈ ∆Y0).

From this we have
sign(φ′

0(z)Φ0(z)) = sign(σ1 − 1) as z ∈ ∆Y0 .

2)

Φ1(z) =
Φ2
0(z)

zΦ′
0(z)

[1 + o(1)] as z → Y1 (z ∈ ∆Y0).

From this we have
sign(Φ1(z)) = y10 as z ∈ ∆Y0 .

3) The functions Φ−1
0 and Φ−1

1 exist and are slowly varying functions as inverse to rapidly varying
functions as the arguments tend to Y0 functions.

4) The function Φ′
1 (Φ−1

1 ) is a regularly varying function of the index 1 as the argument tends
to Y0.

Note 2. The function θ1(y(t(y
′))) is a slowly varying function for y′ → Y0 (y′ ∈ ∆Y0) as a

composition of regularly and slowly varying functions as y′ → Y0 (y′ ∈ ∆Y0).

Let’s consider the function θ1(y(I
−1
1 (z))), where I−1

1 (z) is the function inverse to the function
I1(t), and it can be proved that θ1(y(I

−1
1 (z))) is a slowly varying function as z → Z1.

Indeed,
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lim
z→Z1

z(θ1(y(I
−1
1 (z))))′

θ1(y(I
−1
1 (z)))

= lim
z→Z0

(
zθ′1(y(I

−1
1 (z)))

θ1(y(I
−1
1 (z)))

· y
′(I−1

1 (z))

I ′1(I
−1
0 (z))

)
= lim

z→Z0

(
y(I−1

1 (z))θ′1(y(I
−1
1 (z)))

θ1(y(I
−1
1 (z)))

· y(I
−1
0 (z)) · y′(y′−1(y′(I−1

1 (z))))

(y(y′−1(y′(I−1
1 (z)))))2

× Φ̃(y′(I−1
1 (z)))

y′(I−1
1 (z))Φ̃′(y′(I−1

1 (z)))
· zΦ̃′(y′(I−1

1 (z)))

I ′1(I
−1
1 (z))Φ̃(y′(I−1

1 (z)))

)
= 0.

Let the function Φ−1
1 satisfy the condition S, and we have that

y′(t) = Φ−1
1 (I1(t))[1 + o(1)] as t ↑ ω.

The following theorem takes place.

Theorem 1. Let σ1 ∈ R \ {1}, the function θ1 satisfy the condition S, and the functions θ1 and
Φ−1
1 · Φ

′
1

Φ1
(Φ−1

1 ) satisfy the condition S1. Then for the existence of Pω(Y0, Y1, 1)-solutions of equation
(1) it is necessary, and if the following condition takes place

(σ1 − 2) · y00I0(t) · I2(t) > 0 as t ∈ [a;ω[ , (4)

and there is a finite or infinite limit √
|πω(t)I′1(t)

I1(t)
|

ln |I1(t)|
,

then it is sufficient the fulfillment of the next conditions

y00α0 > 0, lim
t↑ω

Φ−1
1 (I2(t)) = Y0, lim

t↑ω
I2(t) = Z1, (5)

lim
t↑ω

Φ′
1(Φ

−1
1 (I2(t)))

I1(t)I ′2(t)
= −1, (6)

y00 · I1(t) < 0 as t ∈ ]b;ω[ , lim
t↑ω

−1

I1(t)
= Y1, (7)

lim
t↑ω

I2(t) · I ′0(t) · θ
1

2−σ1
1 (− 1

I1(t)
)

Φ′
1(Φ

−1
1 (I2(t)))I ′2(t)

= 1. (8)

Moreover, for each such solution the next asymptotic representations as t ↑ ω take place:

y′(t) = Φ−1
1 (I1(t))[1 + o(1)], y(t) =

I ′2(t)I1(t)

I2(t)Φ′
1(Φ

−1
1 (I1(t)))

[1 + o(1)]. (9)

During the proof of Theorem 1, equation (1) is reduced by a special transformation to the equi-
valent system of quasilinear differential equations. The limit matrix of coefficients of this system
has real eigenvalues of different signs.

We obtain that for this system of differential equations all the conditions of Theorem 2.2 in
[5] take place. According to this theorem, the system has a one-parameter family of solutions
{zi}2i=1 : [x1,+∞[→ R2 (x1 ≥ x0), that tends to zero as x → +∞.

Any solution of the family gives raise to such a solution y of equation (1) that, together with
its first derivative, admit the asymptotic images (9) as t ↑ ω. From these images and conditions
(5)–(8) it follows that these solutions are Pω(Y0, Y1, 1)-solutions.
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The study of weakly nonlinear boundary value problems for systems of ordinary differential
equations is a traditional direction for the Kyiv school of nonlinear oscillations [3, 11]. A special
critical case for such problems occurs when the equation defining the generating solution turns
into an identity [4, 11]. Necessary and sufficient conditions for the solvability of weakly nonlinear
boundary value problems in a special critical case are found in the work [4].

1 Statement of the problem
We study the problem of constructing a solution

z(t, ε) : z( · , ε) ∈ C1[a, b], z(t, · ) ∈ C[0, ε0]

to the boundary value problem [3,4, 11]

dz

dt
= A(t)z + f(t) + εZ(z, t, ε), ℓz( · , ε) = α+ εJ(z( · , ε), ε). (1.1)

We look for the solution of problem (1.1) in a small neighborhood of the solution of the generating
Noetherian (m ̸= n) boundary value problem

dz0
dt

= A(t)z0 + f(t), ℓz0( · ) = α, α ∈ Rm. (1.2)

Here A(t) is an (n×n)-dimensional matrix and f(t) is an n-dimensional column-vector, the elements
of which are real functions continuous on the segment [a, b], ℓz( · ) is a linear bounded vector
functional

ℓz( · ) : C[a, b] → Rm.

Nonlinearities Z(z, t, ε) and
J(z( · , ε), ε) : C[a, b] → Rm

of the boundary value problem (1.1) are assumed to be twice continuously differentiable with respect
to the unknown z in a small neighborhood of the generating solution and by a small parameter ε in
a small positive neighborhood of zero. In addition, we consider the vector function Z(z, t, ε) to be
continuous with respect to the independent variable t on the segment [a, b]. We study the critical
case (PQ∗ ̸= 0), and we assume that the condition

PQ∗
d

{
α− ℓK[f(s)]( · )

}
= 0 (1.3)
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is fulfilled. In this case, the generating problem has an (r = n− n1)-parametric family of solutions

z0(t, c0) = Xr(t)c0 +G[f(s);α](t), c0 ∈ Rr.

Here X(t) is a normal (X(a) = In) fundamental matrix of a homogeneous part of the generating
system (1.2), Q := ℓX( · ) is an (m× n)-dimensional matrix,

rankQ = n1, Xr(t) = X(t)PQr ,

PQr is an (n× r)-matrix formed from r linearly independent columns of an (n× n)-orthoprojector
matrix

PQ : Rn → N(Q),

PQ∗
d

is an (r × n)-matrix formed from r linearly independent columns of an orthoprojector

PQ∗ : Rm → N(Q∗),

and
G[f(s);α](t) = X(t)Q+

{
α− ℓK[f(s)]( · )

}
+K[f(s)](t)

is a generalized Green operator of the generating boundary value problem,

K[f(s)](t) = X(t)

t∫
a

X−1(s)f(s) ds

is Green’s operator of the Cauchy problem of the generating system, Q+ is the pseudo-inverse
Moore–Penrose matrix [3]. To find the necessary conditions for the existence of solutions

z(t, ε) = z0(t, c0) + x(t, ε)

of problem (1.1) in the critical case, the equation for the generating constants

F0(c0) := PQ∗
d

{
J(z0( · , c0), 0)− ℓK

[
Z(z0(s, c0), s, 0)

]
( · )

}
= 0

is traditionally used [3, 4, 8, 11]. Let us consider a less studied case when the equation for the
generating constants turns into the identity [2, 4, 11]:

F0(c0) ≡ 0, c0 ∈ Rr. (1.4)

The boundary value problem (1.1) under condition (1.4) according to I. G. Malkin’s classification
[11, p. 139] represents a special critical case, since the traditional scheme of analysis and construction
of solutions [3, 8] for such problems is not applicable. In articles [2, 5], the equation for generating
constants is constructed, which determines the necessary conditions for the existence of solutions
to problem (1.1) in the special critical case. The sufficient condition for the existence of solutions
to problem (1.1) in a special critical case is the simplicity of the roots of this equation [2, 5]. We
have found conditions for the existence of solutions to problem (1.1) in the special critical case in
the presence of multiple roots of such an equation [2, 5].
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2 Equations for generating functions
To find the necessary conditions for the existence of solutions z(t, ε) to problem (1.1) in a small
neighborhood of the solution of generating problem (1.2) in article [7], the following equation is
proposed:

F(c0(ε)) := PQ∗
d

{
J(z0( · , c0(ε)), ε)− ℓK

[
Z(z0(s, c0(ε)), s, ε)

]
( · )

}
= 0.

Consider the case when the equation for generating constants turns into an identity:

F0(c0) ≡ 0, F(c0(ε)) ̸≡ 0.

The solution of the nonlinear boundary value problem (1.1) in a particularly critical case is naturally
sought in the vicinity of the solution

z0(t, c0(ε)) = Xr(t)c0(ε) +G1(t, c0(ε))

of the modified generating boundary value problem

dz0(t, c0(ε))

dt
= A(t)z0(t, c0(ε)) + f(t) + εZ

(
z0(t, c0(ε)), t, 0

)
, (2.1)

ℓz0( · , c0(ε)) = α+ ε J
(
z0( · , c0(ε)), 0

)
;

here
G1(t, c0(ε)) := G

[
f(t) + εZ

(
z0(s, c0(ε)), s, 0

)
;α+ ε J

(
z0( · , c0(ε)), 0

)]
(t).

Under condition (1.3), the equality

z0(t, c0(0)) = z0(t, c0)

holds, therefore, in the special critical case (F0(c0) ≡ 0), for any value of c0 ∈ Rr, the generating
boundary value problem (2.1) is solvable. The necessary and sufficient condition for the solvability
of the boundary value problem (1.1) in the special critical case has the form

F (c(ε)) := PQ∗
d

{
J
(
z0( · , c0) + x( · , ε), ε

)
− ℓK

[
Z(z0(s, c0) + x(s, ε), s, ε)

]
( · )

}
= 0. (2.2)

Directing in equality (2.2)
z(t, ε) → z0(t, c0(ε))

with a fixed value of ε, we obtain the necessary condition for the solvability of boundary value
problem (1.1)

F0(c0(ε), ε) := PQ∗
d

{
J(z0( · , c0(ε)), ε)− ℓK

[
Z(z0(s, c0(ε)), s, ε)

]
( · )

}
= 0. (2.3)

In this way, the following lemma is proved.

Lemma. Suppose that for the boundary value problem (1.1) there is a special critical case and
condition (1.3) of the solvability of the generating problem is used. Let us also assume that in a
small neighborhood of the generating solution z0(t, c

∗
0(ε)) problem (1.1) has a solution

z(t, ε) : z( · , ε) ∈ C1[a, b], z(t, · ) ∈ C[0, ε0].

Then the vector c∗0(ε) ∈ Rr satisfies equation (2.3).
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Equation (2.3) defines the generating solutions z0(t, c
∗
0(ε)), in the small neighborhood of which

the sought solutions of boundary value problem (1.1) for the special critical case can be found.
By analogy with weakly nonlinear boundary value problems in critical case [3], equation (2.3) will
be called the equation for generating functions of the boundary value problem (1.1) in the special
critical case. In contrast to article [7], equation (2.3) is built on the basis of the auxiliary boundary
value problem (2.1), and not the original generating boundary value problem (1.2), which will be
obtained from this problem at ε = 0. To find the solution c∗0(ε) ∈ Rr of the nonlinear equation (2.3),
the Newton–Kantorovich method can be used [1, 6, 9]. The smoothness of the vector c∗0(ε) ∈ Rr

significantly affects the form of the sought solution of the boundary value problem (1.1).
The proposed scheme of studies of the nonlinear boundary value problem (1.1) for the special

critical case is a generalization of the results for boundary-value problems for systems of differential
equations [1, 3, 4, 8, 10–12].
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We consider the linear control system

ẋ = A(t)x+Bu, t ∈ R, x ∈ Rn, n ≥ 2, (1)

where A(t) is a continuous periodic n × n-matrix with a modulus of frequencies Mod, B is the
constant r × n-matrix, u is the input. Various problems of control theory of linear systems have
been studied in many works (see, for example, [6]). In this works it is assumed, as a rule, that the
set of frequencies of the solution and the system itself coincide.

At the same time, as shown by X. Masser [5], Ya. Kurzveil and O. Veivoda [4], etc., the system of
ordinary differential periodic (almost periodic) equations can have solutions, the intersection of the
frequency module of which with the frequency module of the system is trivial. Later such solutions
were named strongly irregular, and their frequency spectrum is asynchronous, and describable
oscillations are asynchronous. Note that in the case of a periodic system the irregularity means the
incommensurability of the periods of the solution and the system.

In what follows, as a control of u( · ) in system (1) we will use continuous on real axis of periodic
r-vector-functions, set of exponentials of which Exp (u) is contained in the frequency modulus
Mod (A) coefficient matrices.

Then, as applied to system (1), the control problem of asynchronous spectrum with a target
set L is as follows: select this program control

u = U(t)

from the indicated admissible set, so that the system

ẋ = A(t)x+Bu(t)

has a strongly irregular periodic solution with a given spectrum frequency L (target set).
The solvability of the formulated problem for system (1) with program control and zero mean

value of the matrix coefficients were studied in the work [3]. In this report, we give a solution of the
problem of control of the asynchronous spectrum for system (1), the average value of the matrix of
coefficients of which has a degenerate non-zero left upper diagonal block, and the rest of the blocks
are zero.

Let P = (pij), i = 1, n, j = 1,m, – some matrix and 1 ≤ k1 < · · · < ks ≤ n, 1 ≤ l1 < · · · < lq ≤
m – two ordered sequences of natural numbers. Let P

l1···lq
k1···ks be a block of the matrix P , standing

at the intersection of rows with numbers k1, . . . , ks and columns with numbers l1, . . . , lq.
Let P = (pij), i = 1, n, j = 1,m, be some square matrix and 1 ≤ k1 < · · · < ks ≤ n,

1 ≤ l1 < · · · < lq ≤ m be two ordered sequences of natural numbers. By P
l1···lq
k1···ks we denote
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the s × q-matrix, standing at the intersection of rows with numbers k1, . . . , ks and columns with
numbers l1, . . . , lq of matrix P .

For continuous on R ω-periodic real-valued matrix F (t), we determine the mean value F̂ =

1
ω

ω∫
0

F (t)dt and the oscillating part F̃ (t) = F (t) − F̂ . Let Mod(F ) be a frequency modulus of

the matrix F (t), i.e. the set of all possible linear combinations with integer coefficients of Fourier
exponents of this matrix. By rankcol F we denote the column rank of the matrix F (t), i.e. largest
number of linearly independent columns. Similarly, it is also possible to determine the row rank of
a matrix. Let us note that in the general case, the row and column ranks of the matrix F (t) are
not required match. We will talk that F (t) is a matrix of incomplete column rank, if the column
rank is less than number of columns.

Further, we assume that the rank of the constant rectangular matrix B under control is not the
maximum and row with numbers k1, . . . , kd, 1 ≤ k1 < · · · < kd ≤ n zero, i.e.,

rankB = r1 < r, B1···r
k1···kd = 0 (d = n− r1). (2)

The last restriction is not a loss of generality of reasoning, so we can achieve this with the help of
a linear system transformations (1) using elementary algorithms matrix row transformations.

We also assume that the mean value of the coefficient matrix is a result of permuting rows and
columns, we can represent in the form Âk1···kd

k1···kd Â
kd+1···kn
k1···kd

Âk1···kd
kd+1···kn Â

kd+1···kn
kd+1···kn

 =

(
Âk1···kd

k1···kd 0

0 0

)
, Âk1···kd

k1···kd = diag (âk1 k1 , . . . , âkd kd), (3)

and âk1 k1 · · · âkd kd = 0. The last condition means that among the diagonal elements of the block
Âk1···kd

k1···kd are null. It is possible to assume that they are at the beginning of the diagonal

âk1+i−1 k1+i−1
= 0, i = 1,m, 1 ≤ m < d, (4)

and the rest of the elements are non-zero. In the opposite case this can be achieved with the help
of linear non-degenerative transformation system (1), which is equivalent to permuting the first d
equations in the required order.

Let kd+1, . . . , kn, 1 ≤ kd+1 < · · · < kn ≤ n be the numbers of non-zero rows of a matrix B.
Then, taking into account the numbering of zero and non-zero rows of this matrix to simplify the
recording, we take the following notations:

A11(t) = Ak1···kd
k1···kd(t), A12(t) = A

kd+1···kn
k1···kd (t).

Through Ã
(1)
11 (t) we denote d×m-matrix composed of the first m columns of the d×d-block Ã11(t).

Let’s construct d× (m+ r1)-matrix Ã∗(t) =
[
Ã

(1)
11 (t) A12(t)

]
.

We have the following

Theorem. For the linear systems (1), (2)–(4), the problem of control of the asynchronous spectrum
with target set L is solvable if and only if L = {0} and the inequality

rankcol Ã∗(t) < r1 +m

is true.
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Consider the higher order nonlinear equation

u(n) + q(t)u(n−2) + r(t)|u|λ sgnu = 0, n ≥ 3, (1)

where the functions r and q are continuous for t ≥ 1, q is positive and λ > 0.
We study equation (1) as a perturbation of the linear differential equation

y(n) + q(t)y(n−2) = 0, n ≥ 3. (2)

Some contributions on the proximity of solutions of two differential equations can be found in the
quoted monograph [9], in the papers [1–3,5] and references therein, in which this problem has been
studied in various directions for a large variety of equations. Here we present a survey on some
results concerning this topic, which are obtained by the authors and others in the last ten years,
see [2–5].

An important role on this problem is played by the second order linear equation

h′′ + q(t)h = 0. (3)

Prototypes of (3) are equations with q(t) ≡ 1 and q(t) ≡ 0. When q(t) ≡ 1, then (3) is
oscillatory and this case has been considered in [8]. More precisely, in [8] it was shown that, if r is
positive and sufficient large in some sense, then for n even every proper solution of

u(n) + u(n−2) + r(t)|u|λ sgnu = 0 (4)

is oscillatory, and for n odd every proper solution of (4) is oscillatory, or is vanishing at infinity
together with its derivatives, or admits the asymptotic representation

x(t) = c(1 + sin(t− φ)) + ε(t),

where c, φ are suitable constants and ε is a continuous function for t ≥ 0 which vanishes at infinity.
According to [8], such equation is said to have property A′, see also [9] for more details.

On the other hand, if q(t) ≡ 0, then (3) is nonoscillatory. This case has been studied in [7],
where it is proved that if −r(t) = ϱ(t) > 0 is sufficient small in some sense, then the equation

u(n) = ϱ(t)|u|λ sgnu, λ > 1, (5)
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has an (n− 1) parametric family of so-called rapidly increasing solutions, satisfying the condition

lim
t→∞

|u(n−1)(t)| = ∞,

see also [9] for more details.
When (3) is oscillatory, the asymptotic representation of solutions to (1) has been studied by

authors in [3,5] and the main results have been summarized in [6]. Here, we continue such a study
by considering the opposite case, that is the case in which (3) is nonoscillatory. Using some results
from [2, Theorem 1], we obtain the following

Theorem 1. Let the second order differential equation (3) be nonoscillatory and
∞∫
1

tq(t) dt = ∞. (6)

Assume that for some real number m ∈ [0, n− 1],
∞∫
1

tn+mλ |r(t)| dt < ∞. (7)

Then for any solution y to (2) such that y(t) = O(tm), there exists a solution u to (1) such that for
large t

u(i)(t) = y(i)(t) + εi(t), i = 0, 1, . . . , n− 1, (8)

where all εi are functions of bounded variation and lim
t→∞

εi(t) = 0.

The proof is based on the induction method, an iterative process and suitable estimates for
solutions to (2). A similar approach has been used in [3], but using completely different estimations
for solutions of (2).

Now consider the special case of (1), i.e. the equation

u(n)(t) +
σ

t2
u(n−2)(t) + r(t)|u|λ sgnu = 0, n ≥ 3, (9)

where σ ∈ (0, 1/4). Obviously, (6) is satisfied and the corresponding second order equation is the
Euler equation

h′′(t) +
σ

t2
h(t) = 0,

which is nonoscillatory and whose solutions are known, see, e.g. [10, p. 45]. Using suitable estima-
tions for solutions of (2), we have the following theorem see [2, Corollary 3].

Theorem 2. Let σ ∈ (0, 1/4) and assume that
∞∫
1

tn−1+γλ |r(t)| dt < ∞,

where
γ = n− 2−1

(
3 +

√
1− 4σ

)
.

Then for any polynomial Q with degQ ≤ n− 3, there exist solutions u of (9) such that for large t

u(i)(t) =
(
c1Γ1(t) + c2Γ2(t) +Q(t)

)(i)
+ εi(t), i = 0, . . . , n− 1,
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where

Γ1(t) =

t∫
1

(t− s)n−3sµ dsO(tβ), Γ2(t) =

t∫
1

(t− s)n−3sv dsO(t γ),

µ = 2−1
(
1−

√
1− 4σ

)
, ν = 2−1

(
1 +

√
1− 4σ

)
,

c1, c2 are constants and functions εi are of bounded variation for large t and lim
t→∞

εi(t) = 0.

The following example illustrates Theorem 1.

Example 1. Let λ > 0 and consider the nonlinear equation for t ≥ 1

u(4) +
1

t2 log et
u(2) =

e−t(t2 log et+ 1)

(1 + e−t)λt2 log et
|u|λ sgnu. (10)

A solution of (10) is
u(t) = t+ e−t. (11)

Setting

q(t) =
1

t2 log et
, r(t) =

e−t(t2 log et+ 1)

(1 + e−t)λt2 log et
,

we get that (3) is nonoscillatory and (6) is valid. Moreover, we have for any σ > 0

∞∫
1

tσr(t) dt < ∞.

Thus, all the assumptions of Theorem 1 are verified with m = 1 and so equation (10) has a solution
u such that for any large t

u(i)(t) = y(i)(t) + εi(t), i = 0, 1, 2, 3,

where εi are functions of bounded variation such that lim
t→∞

εi(t) = 0 and y(t) = t, as the solution
(11) illustrates.

Finally, consider the fourth-order differential equation with deviating argument

x(4)(t) + q(t)x′′(t) + r(t)|x(φ(t))|λ sgnx(φ(t)) = 0, λ > 0, (12)

where φ is a nonegative continuous function for t ≥ 1 and φ(1) = 1, lim
t→∞

φ(t) = ∞. From [3, Theo-
rem 1], if q is a continuously differentiable bounded away from zero function, i.e. q(t) ≥ q0 > 0 for
large t, such that

∞∫
1

|q′(t)| dt < ∞, (13)

and
∞∫
1

tλ+1|r(t)| dt < ∞, (14)

then (12) with φ(t) = t has a solution x such that

x(i)(t) = ti + εi(t), i = 0, 1, 2, 3,
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where functions εi are of bounded variation for large t and lim
t→∞

εi(t) = 0. In [4] this result has
been improved for a more general equation than (12), without the assumption φ(t) = t. More
precisely, by means of a topological method jointly with certain integral inequalities, the following
asymptotic representation of unbounded solutions of (12) has been given, see [4, Corollary 4.1].

Theorem 3. Let r(t) ̸= 0 for large t. If q is a continuously differentiable bounded away from zero
function satisfying (13), then (12) has an asymptotic linear solution x, i.e. a solution x satisfying

lim
t→∞

|x(t)| = ∞, lim
t→∞

x′(t) = cx ̸= 0, (15)

if and only if
∞∫

t0

|r(t)|φλ(t) dt < ∞. (16)

Theorem 3 illustrates the dependence of asymptotic linear solutions from the behavior of the
deviating argument φ as t → ∞. Moreover, in view of (14) and (16), when φ(t) = t, Theorem 2
improves the quoted result in [3, Theorem 1]. The following example illustrates this fact.

Example 2. Consider the equation

x(4)(t) + x′′(t) +
1

(t+ 1)2
|x(t1/2)|3/2 sgnx(t1/2) = 0, t ≥ 1. (17)

By Theorem 3 equation (17) has unbounded asymptotic linear solutions. On the other hand, the
corresponding equation

x(4)(t) + x′′(t) +
1

(t+ 1)2
|x(t)|3/2 sgnx(t) = 0, t ≥ 1, (18)

does not have solutions x satisfying (15). Indeed, by contradiction, let x be an eventually positive
solution x of (18) satisfying (15). Since we have for some T ≥ 1

∞∫
T

x3/2(t)

(t+ 1)2
dt = ∞,

from (18) we get
lim
t→∞

(x′′′(t) + x′(t)) = −∞,

which gives a contradiction with (15).

Since the function q considered in Theorem 3 is bounded away from zero, the corresponding
second order equation (3) is oscillatory. Thus, in view of the above mentioned result for equation
(5), it is natural to ask under which assumptions on deviating argument φ the above results continue
to hold for (12) or, more generally, for (1) when q is small so that (3) is nonoscillatory.
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The differential equation
yn = f(t, y, y′, . . . , yn−1) (1)

is considered. Here n ≥ 2, f : [α, ω[×∆Y0 ×∆Y1 × · · · ×∆Yn−1 → R is some continuous function,
−∞ < α < ω ≤ +∞, Yj equals to zero, or to +∞, ∆Yj is some one-sided neighborhood of Yj ,
j = 0, 1, . . . , n− 1.

The asymptotic estimations for singular, quickly varying, and Kneser solutions of equation (1)
are described in the monograph by I. T. Kiguradze, T. A. Chanturia [4].

Definition 1. The solution y of equation (1), defined on the interval [t0, ω[⊂ [a, ω[ is called
Pω(Y0, Y1, . . . , Yn−1, λ0)-solution, where −∞ ≤ λ0 ≤ +∞, if the next conditions take place

y(j)(t) ∈ ∆Yj as t ∈ [t0, ω[ , lim
t↑ω

y(j)(t) = Yj (j = 0, 1, . . . , n− 1), lim
t↑ω)

[yn−1(t)]2

yn−2(t)yn(t)
= λ0.

The asymptotic behavior of such solutions earlier has been investigated in the works by V. M. Ev-
tukhov and A. M. Klopot [1–3,5] for the differential equation

yn =
m∑

n−1

aipi(t)
n−1∏
j=0

φij(y
(j)),

where n ≥ 2, αi ∈ {−1; 1}, pi : [α, ω[→ ]0,+∞[ is a continuous function i = 1, . . . ,m, −∞ < α <
ω ≤ +∞, φij : ∆Yj → ]0,+∞[ is a continuous regularly varying as y(j) → Yj function of order

σj , j = 0, 1, . . . , n− 1 (i− 1, . . . ,m).

The aim of the paper is to establish the necessary and sufficient conditions of the existence of
Pω(Y0, Y1, . . . , Yn−1, 1)-solutions of equation (1) and to find the asymptotic representations of such
solutions and their derivatives to the order n− 1 including.

Every Pω(Y0, Y1, . . . , Yn−1, 1)-solution of the differential equation (1) has (see, for example, [1])
the next a priori asymptotic properties

y′(t)

y(t)
∼ y′′(t)

y′(t)
∼ · · · ∼ yn(t)

yn−1(t)
as t ↑ ω, lim

t↑ω

πω(t)y
′(t)

y(t)
= ±∞,

where

πω(t) =

{
t if ω = +∞,

t− ω if ω < +∞.
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Definition 2. The function f in the differential equation (1) is called a function, that satisfies the
condition (RN)1, if there exist a number α0 ∈ {−1; 1}, a continuous function p : [α, ω[→ ]0,+∞[
continuous varying as z → Yj (j = 0, 1, . . . , n−1), functions φj : ∆Yj → ]0,+∞[ (j = 0, 1, . . . , n−1)
of orders σj (j = 0, 1, . . . , n− 1), such that for all continuously differentiable functions zj : [α, ω[→
∆Yj (j = 0, 1, . . . , n− 1), satisfying the conditions

lim
t↑ω

zj(t) = Yj , lim
t↑ω

πω(t)z
′
j(t)

zj(t)
= ±∞ (j = 0, 1, . . . , n− 1),

lim
t↑ω

z′n−1(t)zj(t)

zn−1(t)z′j(t)
= 1 (j = 1, . . . , n− 1),

the next representation takes place

f(t, z0(t), z1(t), . . . , zn−1(t)) = α0p(t)
n−1∏
j=0

φj(zj(t))[1 + o(1)] as t ↑ ω.

Furthermore, we will use the following notations.

γ = 1−
n−1∑
j=0

σj , µn =
n−2∑
j=0

σj(n− j − 1),

νj =

{
1 if Yj = +∞, or Yj = 0 and ∆Yj is the right neighborhood of zero,
−1 if Yj = +∞, or Yj = 0 and ∆Yj is the left neighborhood of zero

(j = 0, 1, . . . , n− 1),

J0(t) =

t∫
A0

p(s) ds, J00(t) =

t∫
A00

J0(s) ds,

where

A0 =


α if

ω∫
α

p(s) ds = +∞,

ω if
ω∫

α

p(s) ds < +∞,

A00 =


α if

ω∫
α

|J0(s)| ds = +∞,

ω if
ω∫

α

|J0(s)| ds < +∞.

Theorem. Let the function f satisfy the condition (RN)1 and γ ̸= 0. Then for the existence of
Pω(Y0, Y1, . . . , Yn−1, 1)-solutions of equation (1) the next conditions are necessary:

p(t)

J0(t)
∼ J0(t)

J00(t)
as t ↑ ω,

lim
t↑ω

πw(t)p(t)

J0(t)
= ±∞, νj lim

t↑ω
|J0(t)|1/γ = Yj (j = 0, 1, . . . , n− 1),

and for t ∈ ]α, ω[ , the next inequalities take place

α0Vn−1γJ0(t) > 0, νjνn−1(γJ0(t))
n−j−1 > 0 (j = 0, 1, . . . , n− 2).

As the algebraic p equation

(1 + p)n =
n−1∑
j=0

σj(1 + pj (2)
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has no roots with zero real part, the conditions are also sufficient for the existence of such solutions
of equation (1). Moreover, for such solutions the next asymptotic representations

yj(t) =
(γJ00(t)

J0(t)

)n−j−1
yn−1(t)[1 + o(1)] (j = 0, 1, . . . , n− 2), (3)

|y(n−1)(t)|γ
n−1∏
j=0

Lj

(γJ00(t)
J0(t)

)n−j−1
yn−1(t)

= γJ0(t)
∣∣∣γJ00(t)
J0(t)

∣∣∣µn

[1 + 0(1)] (4)

take place as t ↑ ω. Here

Lj(y
(j)) = |y(j)|−σjφj(y

(j)(t)) (j = 0, 1, . . . , n− 1).

There exists m-parametric family of such solutions, if among the roots of equation (2) there exists
m roots (taking into account multiple roots), the real parts of which have the sign that is among
opposite to the sign of α0Vn−1.
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We consider the second order ordinary differential equation of the form:

F (t, y, y′, y′′) =
n∑

k=1

pk(t)y
αk |y′|βk |y′′|γk = 0, (1)

n ∈ N, n ≥ 2, αk, βk, γk ∈ R,
n∑

k=1

|γk| ̸= 0, pk ∈ C([a; +∞), a > 0;R) (k = 1, n), pi(t) ̸= 0 (i = 1, s

for some 2 ≤ s ≤ n).
We investigate the question of the existence and asymptotic behavior (as t → +∞) of unbo-

udedly continuable to the right solutions (R-solutions) y(t) of equation (1) and the derivatives y′(t),
y′′(t) of these solutions.

Earlier in [3] we have considered a similar question of the asymptotic behavior of solutions of
equation of the form (1) when

n∑
k=1

|γk| = 0, that is when equation (1) is a first order differential

equation.
The main result is obtained under the assumption that there exists a function v ∈ C2([t1; +∞),

t1 > a;R) which possesses the following properties:

(A) v(t) > 0, v′′(t) ̸= 0 on [t1; +∞),

lim
t→+∞

v(t) = 0 ∨+∞;

(B)

lim
t→+∞

v′′(t)v(t)

(v′(t))2
= µ (0 ̸= µ ∈ R);

(C)

lim
t→+∞

pi(t)v
αi(t)|v′(t)|βi |v′′(t)|γi

p1(t)vα1(t)|v′(t)|β1 |v′′(t)|γ1
= ci (0 ̸= ci ∈ R, i = 1, s),

s∑
i=1

γici ̸= 0,

lim
t→+∞

pj(t)v
αj (t)|v′(t)|βj |v′′(t)|γj

p1(t)vα1(t)|v′(t)|β1 |v′′(t)|γ1
= 0 (j = s+ 1, n).

The following lemma is valid.
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Lemma. Let in the relation
Φ(t, x1, x2, x3) = 0, (2)

(t, x1, x2, x3) ∈ H, H = [a; +∞)×
3∏

k=1

Hk, Hk = [−hk;hk], a ∈ R, hk > 0 (k = 1, 2, 3), the function

Φ : H → R satisfy the conditions:

1) Φ, ∂Φ
∂x1

, ∂Φ
∂x2

, ∂
2Φ

∂x2
3
∈ C(H;R);

2)
lim

t→+∞
sup

(x1;x2)∈H1×H2

|Φ(t, x1, x2, 0)| = 0;

3)
lim

t→+∞

∂Φ

∂x3
(t, 0, 0, 0) = A1 ̸= 0;

4)

sup
D

∣∣∣∂2Φ

∂x23
(t, x1, x2, x3)

∣∣∣ = A2 < +∞.

Then in some domain H∗ = H0×H∗
3 , H0 = [t0; +∞)×

2∏
k=1

H∗
k , H∗

k = [−h∗k;h
∗
k] (k = 1, 2, 3), where

t0 and h∗k satisfy the inequality t0 ≥ a, 0 < h∗k ≤ hk, 4A2h∗
3

|A1| < 1, relation (2) defines a unique
function x3 : H0 → R that satisfies the conditions:

x3,
∂x3
∂x1

,
∂x3
∂x2

∈ C(H0;R), Φ(t, x1, x2, x3(t, x1, x2)) ≡ 0, lim
t→+∞

x3(t, 0, 0) = 0

and
x3(t, x1, x2) ∼ − Φ(t, x1, x2, 0)

∂Φ
∂x3

(t, x1, x2, 0)
.

The following theorem was obtained using the above lemma and the results from [1,2, 4].

Theorem. Let there exist a function v ∈ C2([t1; +∞), t1 > a;R) which possesses the properties
(A)–(C). Then for the R-solution y(t) of the differential equation (1) with the asymptotic represen-
tation

y(k)(t) ∼ v(k)(t) (k = 0, 2) (3)

to exist it is necessary, and if the roots λ1, λ2 of the algebraic equation

λ2 +

(
1 +

m
s∑

i=1
(βi + γi)ci

s∑
i=1

γici

)
λ+

m
s∑

i=1
(αi + βi + γi)ci

s∑
i=1

γici

= 0

have the property Re λk ̸= 0 (k = 1, 2), then it is also sufficient that
s∑

i=1
ci = 0.

Moreover, if sign(Reλ1) ̸= sign(Reλ2), then there exists a one-parametric set of R-solutions
with the asymptotic representation (3); if in some suburb of +∞

sign(Reλ1) = sign(Reλ2) ̸= sign(v′(t)),

then there exists a two-parametric set of R-solutions with the asymptotic representation (3).
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1 Introduction
Consider the Sturm–Liouville problem

y′′ +Q(x)y + λy = 0, x ∈ (0, 1), (1)
y(0) = y(1) = 0, (2)

where Q belongs to the set Tα,β,γ of all locally integrable on (0, 1) functions with non-negative
values such that the following integral conditions hold:

1∫
0

xα(1− x)βQγ(x) dx = 1, γ ̸= 0, (3)

1∫
0

x(1− x)Q(x) dx < ∞. (4)

A function y is a solution of problem (1), (2) if it is absolutely continuous on the segment [0, 1],
satisfies (2), its derivative y′ is absolutely continuous on any segment [ρ, 1− ρ], where 0 < ρ < 1

2 ,
and equality (1) holds almost everywhere in the interval (0, 1).

In Theorem 1 [2], it was proved that if condition (4) does not hold, then for any 0 ≤ p ≤ ∞,
there is no non–trivial solution y of equation (1) with properties y(0) = 0, y′(0) = p.

If γ < 0, α ≤ 2γ− 1 or β ≤ 2γ− 1, then the set Tα,β,γ is empty; for other values α, β, γ, γ ̸= 0,
the set Tα,β,γ is not empty [4, Chapter 1, § 2, Theorem 3]. Since for γ < 0, α ≤ 2γ−1 or β ≤ 2γ−1
there is no function Q satisfying (3) and (4) taken together, then problem (1)–(4) is not considered
for these parameters.

This work gives estimates for

mα,β,γ = inf
Q∈Tα,β,γ

λ1(Q).

Consider the functional

R[Q, y] =

1∫
0

y′2 dx−
1∫
0

Q(x)y2 dx

1∫
0

y2 dx

.

If condition (4) is satisfied, then the functional R[Q, y] is bounded below in H1
0 (0, 1) [3]. It was

proved [2, 3] that for any Q ∈ Tα,β,γ ,

λ1(Q) = inf
y∈H1

0 (0,1)\{0}
R[Q, y].
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For any Q ∈ Tα,β,γ , we have

mα,β,γ = inf
Q∈Tα,β,γ

inf
y∈H1

0 (0,1)\{0}
R[Q, y] ≤ inf

y∈H1
0 (0,1)\{0}

1∫
0

y′2 dx

1∫
0

y2 dx

= π2.

2 Main results
Theorem 2.1. If γ > 1, α, β < 2γ − 1, then there exist functions Q∗ ∈ Tα,β,γ and u ∈ H1

0 (0, 1),
u > 0 on (0, 1) such that mα,β,γ = R[Q∗, u]. Moreover, u satisfies the equation

u′′ +mu = −x
α

1−γ (1− x)
β

1−γ u
γ+1
γ−1 (5)

and the integral condition
1∫

0

x
α

1−γ (1− x)
β

1−γ u
2γ
γ−1 dx = 1. (6)

Theorem 2.2.
(1) If γ = 1, α, β 6 0, then mα,β,γ > 3

4π
2.

(2) If γ = 1, β 6 0 < α 6 1 or α 6 0 < β 6 1, then mα,β,γ > 0.

(3) If γ = 1, 0 < α, β 6 1, then mα,β,γ > 0.

(4) If γ > 1, α, β 6 γ, then mα,β,γ = 0.

(5) If γ > 1, γ < α 6 2γ − 1 or γ < β 6 2γ − 1, then mα,β,γ 6 0.

(6) If γ < 0, α, β > 2γ − 1, 0 < γ < 1, −∞ < α, β < +∞ or if γ > 1, α > 2γ − 1 or β > 2γ − 1,
then mα,β,γ = −∞.

Let us show that if γ > 1, α > 2γ − 1, −∞ < β < ∞, then we have mα,β,γ = −∞ (the case
γ > 1, β > 2γ − 1, −∞ < β < ∞ is similar).

Consider the functions Qε ∈ Tα,β,γ and y0 ∈ H1
0 (0, 1):

Qε(x) =

{
(α+ 1)

1
γ ε

−α+1
γ (1− x)

−β
γ , x ∈ [0, ε],

0, x ∈ (ε, 1],

y0(x) =


xθ, x ∈

[
0,

1

2

]
,

(1− x)θ, x ∈
(1
2
, 1
]
, θ >

1

2
.

We have
1∫

0

Qε(x)y
2
0 dx > L · ε2θ+1−α+1

γ ,

where L is a constant. Since α > 2γ − 1, there is a number θ > 1
2 such that 2θ + 1 < α+1

γ .
Thus,

λ1(Qε) = inf
y∈H1

0 (0,1)\{0}
R[Qε, y] 6 R[Qε, y0],

inf
Q∈Tα,β,γ

λ1(Q) 6 lim
ε→0

λ1(Qε) 6 lim
ε→0

R[Qε, y0] = −∞.
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1 Introduction
In the paper [1], we show how a rather abstract Fredholm-type result from [2] can be successfully
applied to study ω-periodic solutions to the following second order differential equation with a
(λ+ 1)-Laplacian and maxima:(

|u′(t)|λ sgnu′(t)
)′
= g(t)max

{
|u(s)|λ sgnu(s) : µ(t) ≤ s ≤ τ(t)

}
+ f0(t), (1.1)

where f0, g ∈ L([0, ω];R), λ > 0, and µ, τ : [0, ω] → [0, ω] are measurable functions satisfying
µ(t) ≤ τ(t) for almost all t belonging to the period segment [0, ω]. Two of our main results stated
in Section 2, Corollaries 2.3 and 2.4, present easily verifiable conditions for the existence of at
least one ω-periodic solution to the equation (1.1) for each perturbation f0(t). Importantly, the
leading coefficient g(t) in (1.1) can oscillate: in such a case, we will assume that either positive or
negative part of g(t) dominates the part of g(t) having the opposite sign, see Corollaries 2.3 and
2.4 for the precise formulations. Note that the uniqueness of periodic solutions is not analysed
in the present work. Nevertheless, it is known that even the first order periodic equation with
the right-hand side as in (1.1) and constant coefficient g(t) can have multiple (or even infinite
number of) subharmonic periodic solutions for a class of sine-like forcing terms f0(t). We leave the
aforementioned uniqueness problem for equation (1.1) as an interesting open question.

Now, our approach allows to consider more general objects in the form of two-dimensional
system of functional differential equations

u′1(t) = f1(u1, u2)(t), (1.2)
u′2(t) = f2(u1, u2)(t), t ∈ [0, ω], (1.3)

subjected to the periodic-type boundary value conditions

u1(ω)− u1(0) = h1(u1, u2), u2(ω)− u2(0) = h2(u1, u2). (1.4)
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Here fi : C([0, ω];R) × C([0, ω];R) → L([0, ω];R) (i = 1, 2) are continuous operators satisfying
Carathéodory conditions, i.e., for every r > 0 there exists qr ∈ L([0, ω];R+) such that

|f1(u1, u2)(t)|+ |f2(u1, u2)(t)| ≤ qr(t) for a.e. t ∈ [0, ω] whenever ‖u1‖C + ‖u2‖C ≤ r,

and hi : C([0, ω];R)×C([0, ω];R) → R (i = 1, 2) are continuous functionals bounded on every ball
by a constant, i.e., for every r > 0 there exists Mr > 0 such that

|h1(u1, u2)|+ |h2(u1, u2)| ≤ Mr whenever ‖u1‖C + ‖u2‖C ≤ r.

By a solution to the system (1.2), (1.3) we understand a vector-valued function (u1, u2) ∈
C([0, ω];R) × C([0, ω];R) with absolutely continuous components that satisfy the equalities (1.2)
and (1.3) almost everywhere in [0, ω]. By a solution to the problem (1.2)–(1.4) we understand a
solution to (1.2), (1.3) which satisfies (1.4).

Before presenting our main results in Section 2, let us introduce basic notation used in this
work:

R is a set of all real numbers;
C([0, ω];R) is a Banach space of continuous functions u : [0, ω] → R endowed with the norm

‖u‖C = max
{
|u(t)| : t ∈ [0, ω]

}
;

L([0, ω];R) is a Banach space of Lebesgue integrable functions u : [0, ω] → R endowed with the
norm

‖u‖L =

ω∫
0

|u(t)| dt;

if g ∈ L([0, ω];R) then [g]+, resp. [g]−, denotes the non-negative, resp. nonpositive, part of the
function g, i.e.,

[g]+(t)
def
=

|g(t)|+ g(t)

2
, [g]−(t)

def
=

|g(t)| − g(t)

2
for a.e. t ∈ [0, ω];

P(λ), where λ > 0, is a set of all continuous nondecreasing operators p : C([0, ω];R) →
L([0, ω];R) satisfying Carathéodory conditions which are positively homogeneous with a degree λ,
i.e., for every c > 0 and u ∈ C([0, ω];R) the following identity holds:

p(cu)(t) = cλp(u)(t) for a.e. t ∈ [0, ω].

Let µ, τ : [0, ω] → [0, ω] be measurable functions. Then, for every t ∈ [0, ω], we put I(µ(t), τ(t)) =
[µ(t), τ(t)] if µ(t) ≤ τ(t) and I(µ(t), τ(t)) = ∅ otherwise.

S is a set of all mappings S : [0, ω] → 2[0,ω] such that S(t) is a union of at most countable
number of intervals (µk(t), τk(t)), where µk, τk : [0, ω] → [0, ω] are measurable functions satisfying
µk(t) ≤ τk(t) for almost all t ∈ [0, ω].

Note that the function t 7→ sup{|u(s)|λ sgnu(s) : s ∈ S(t)} is measurable whenever u ∈
C([0, ω];R), S ∈ S , and λ > 0 (we put sup∅ = −∞).

For given p ∈ P(λ) and a number δ ∈ [0, 1] we define the operator p( · ; δ) : C([0, ω];R) →
L([0, ω];R) and a non-negative numbers P̂ (δ) and P (δ) in the following way:

p(u; δ)(t)
def
= (1− δ)p(u)(t)− δp(−u)(t) for a.e. t ∈ [0, ω], P̂ (δ)

def
=

ω∫
0

p(1; δ)(t) dt,

P (δ)
def
= max

{ y∫
x

p(1; δ)(t) dt+

x+ω∫
y

p(1; 1− δ)(t) dt : x ∈ [0, ω], y ∈ [x, x+ ω]

}
,
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where
p(1; ν)(t) = p(1; ν)(t− ω) for a.e. t ∈ (ω, 2ω], ν = δ, 1− δ.

Obviously, P̂ (δ) ≤ P (δ) and −p(−u; δ) ≡ p(u; 1− δ) for every u ∈ C([0, ω];R) and δ ∈ [0, 1]. It can
be also easily verified that

P (δ) = P (1− δ) for δ ∈ [0, 1]. (1.5)

Furthermore, for given p0 ∈ P(λ1) and p1, p2 ∈ P(λ2) we define the following functions:

q1(t, ρ)
def
= sup

{
|f1(u1, u2)(t)− p0(u2)(t)| : ‖u1‖C ≤ ρ, ‖u2‖C ≤ ρλ2

}
(1.6)

for a.e. t ∈ [0, ω],

q2(t, ρ)
def
= sup

{
|f2(u1, u2)(t)− p1(u1)(t) + p2(u1)(t)| : ‖u1‖C ≤ ρλ1 , ‖u2‖C ≤ ρ

}
(1.7)

for a.e. t ∈ [0, ω],

ηk(ρ)
def
= sup

{
|hk(u1, u2)| : ‖uk‖C ≤ ρ, ‖u3−k‖C ≤ ρλ3−k

}
(k = 1, 2). (1.8)

2 Main results
Now we can formulate our main results. The proofs of the results slightly differ depending on
the values of λi. Therefore it is convenient formulate assertions for two separate cases. Thus,
Theorem 2.1 deals with the case when λ2 ≥ 1, Theorem 2.2 can be applied in the case when λ2 < 1.

Theorem 2.1. Let λ1, λ2 > 0, λ1λ2 = 1, and let there exist p0 ∈ P(λ1) and p1, p2 ∈ P(λ2) such
that

lim
ρ→+∞

ω∫
0

qk(s, ρ)

ρ
ds = 0, lim

ρ→+∞

ηk(ρ)

ρ
= 0 (k = 1, 2), (2.1)

where qk and ηk are given by (1.6)–(1.8). Let, moreover, λ2 ≥ 1, p0(1) 6≡ 0, p0(−1) 6≡ 0, and let
there exist i ∈ {1, 2} such that, for every δ ∈ [0, 1], the following inequalities hold:

P0(δ)

21+λ1
P λ1
i (δ) < 1, P̂ λ1

i (δ) <
(
1− P0(δ)

21+λ1
P̂ λ1
i (δ)

)
P̂ λ1
3−i(δ), (2.2)

P λ2
0 (δ)

22+λ2
P3−i(δ) < 2λ2 − 1 +

√
1− P λ2

0 (δ)

21+λ2
Pi(δ) . (2.3)

Then the problem (1.2)–(1.4) has at least one solution.

Theorem 2.2. Let λ1, λ2 > 0, λ1λ2 = 1, and let there exist p0 ∈ P(λ1) and p1, p2 ∈ P(λ2) such
that (2.1) is fulfilled where qk and ηk are given by (1.6)–(1.8). Let, moreover, λ2 < 1, p0(1) 6≡ 0,
p0(−1) 6≡ 0, and let there exist i ∈ {1, 2} such that, for every δ ∈ [0, 1], the following inequalities
hold:

P0(δ)

4
P λ1
i (δ) < 1, P̂ λ1

i (δ) <
(
1− P0(δ)

21+λ1
P̂ λ1
i (δ)

)
P̂ λ1
3−i(δ), (2.4)

P λ2
0 (δ)

22λ2+1
P3−i(δ) < 1 +

√
1− P λ2

0 (δ)

4λ2
Pi(δ) . (2.5)

Then the problem (1.2)–(1.4) has at least one solution.
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In the case when the operator p ∈ P(λ) is homogeneous on the constant functions, i.e., if
p(−1) ≡ −p(1), then the numbers P̂ (δ), P (δ) take more simple form. More precisely, they do not
depend on δ anymore and

P̂ (δ) = P (δ) =

ω∫
0

p(1)(t) dt.

The typical operator having the above-described property is an operator defined by means of
suprema of the function u over certain subsets of its domain:

p(u)(t)
def
= g(t) sup

{
|u(s)|λ sgnu(s) : s ∈ S(t)

}
,

where g ∈ L([0, ω];R) and S ∈ S . Therefore, considering the system

u′1(t) = g0(t) sup
{
|u2(s)|λ1 sgnu2(s) : s ∈ S0(t)

}
+ f̃1(u1, u2)(t), (2.6)

u′2(t) = g1(t) sup
{
|u1(s)|λ2 sgnu1(s) : s ∈ S1(t)

}
− g2(t) sup

{
|u1(s)|λ2 sgnu1(s) : s ∈ S2(t)

}
+ f̃2(u1, u2)(t), (2.7)

where gi ∈ L([0, ω];R+), Si ∈ S (i = 0, 1, 2), and f̃1, f̃2 : C([0, ω];R) × C([0, ω];R) → L([0, ω];R)
are continuous operators satisfying Carathéodory conditions, from Theorems 2.1 and 2.2 we derive
the following assertions:

Corollary 2.1. Let λ1, λ2 > 0, λ1λ2 = 1, and let (2.1) be fulfilled where

qk(t, ρ)
def
= sup

{
|f̃k(u1, u2)(t)| : ‖uk‖C ≤ ρ, ‖u3−k‖C ≤ ρλ3−k

}
for a.e. t ∈ [0, ω] (2.8)

and ηk are given by (1.8). Let, moreover, λ2 ≥ 1 and gi(t) ≥ 0 (i = 0, 1, 2) for almost every
t ∈ [0, ω], g0 6≡ 0, and let there exist i ∈ {1, 2} such that the following inequalities hold:

‖g0‖L
21+λ1

‖gi‖λ1
L < 1, ‖gi‖λ1

L <
(
1− ‖g0‖L

21+λ1
‖gi‖λ1

L

)
‖g3−i‖λ1

L ,

‖g0‖λ2
L

22+λ2
‖g3−i‖L < 2λ2 − 1 +

√
1−

‖g0‖λ2
L

21+λ2
‖gi‖L .

Then the problem (2.6), (2.7), (1.4) has at least one solution.

Corollary 2.2. Let λ1, λ2 > 0, λ1λ2 = 1, and let (2.1) be fulfilled where qk and ηk are given by
(2.8) and (1.8), respectively. Let, moreover, λ2 < 1 and gi(t) ≥ 0 (i = 0, 1, 2) for almost every
t ∈ [0, ω], g0 6≡ 0, and let there exist i ∈ {1, 2} such that the following inequalities hold:

‖g0‖L
4

‖gi‖λ1
L < 1, ‖gi‖λ1

L <
(
1− ‖g0‖L

21+λ1
‖gi‖λ1

L

)
‖g3−i‖λ1

L ,

‖g0‖λ2
L

22λ2+1
‖g3−i‖L < 1 +

√
1−

‖g0‖λ2
L

4λ2
‖gi‖L .

Then the problem (2.6), (2.7), (1.4) has at least one solution.

Now, consider the particular case of equation (1.1) where f0, g ∈ L([0, ω];R), λ > 0, and
µ, τ : [0, ω] → [0, ω] are measurable functions satisfying µ(t) ≤ τ(t) for almost all t ∈ [0, ω].
Obviously, in such a case, we can invoke our previous results setting g0 ≡ 1, g1 ≡ [g]+, g2 ≡ [g]−,
λ1 = 1/λ, λ2 = λ, and S0(t) = {t}, S1(t) = S2(t) = [µ(t), τ(t)] for almost all t ∈ [0, ω]. Thus,
Corollaries 2.1 and 2.2 yields the following assertions dealing with the equation (1.1).
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Corollary 2.3. Let λ ≥ 1 and let there exist σ ∈ {−1, 1} such that

∥∥[σg]+∥∥L <
21+λ

ωλ
,

‖[σg]+‖L
(1− ω21+1/λ‖[σg]+‖1/λL )λ

< ‖[σg]−‖L <
22+λ

ωλ

(
2λ − 1 +

√
1− ωλ

21+λ

∥∥[σg]+∥∥L)
.

Then the equation (1.1) has at least one solution u that satisfies u(0) = u(ω), u′(0) = u′(ω).

Corollary 2.4. Let 0 < λ < 1 and let there exist σ ∈ {−1, 1} such that∥∥[σg]+∥∥L <
( 4

ω

)λ
,

‖[σg]+‖L
(1− ω

21+1/λ ‖[σg]+‖
1/λ
L )λ

<
∥∥[σg]−∥∥L <

22λ+1

ωλ

(
1 +

√
1−

(ω
4

)λ∥∥[σg]+∥∥L)
.

Then the equation (1.1) has at least one solution u that satisfies u(0) = u(ω), u′(0) = u′(ω).
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We consider the linear differential systems

ẏ = A(t)y +Q(t)y, y ∈ Rn, t ≥ t0, (1n)

with bounded infinitely differentiable coefficients and characteristic exponents λ1(A) ≤ · · · ≤ λn(A)
which are the first approximation for perturbed linear systems

ẏ = A(t)y +Q(t)y, y ∈ Rn, t ≥ t0, (2n)

and also with infinitely differentiable n× n-matrices Q(t).
O. Perron [7] (see also [6, pp. 50–51]) established in the two-dimensional case the existence of

systems (12) with exponents λ1(A) ≤ λ2(A) < 0 and with an infinitely differentiable vector function

f(t, y) : (t, y) ∈ [t0,+∞)× R2 → R2,

satisfying the condition
∥f(t, y)∥ ≤ Cf∥y∥m, y ∈ R2, t ≥ t0, (4)

for m = 2 such that all nontrivial solutions of the perturbed system

ẏ = A(t)y + f(t, y), y ∈ R2, t ≥ t0 (5)

are infinitely extendable to the right, and their Lyapunov exponents form the set {λ2(A), λ} with
some number λ > 0. This effect of changing the negative exponents of linear approximation
(12) to positive ones for solutions of the perturbed system (5) with an m-perturbation (4) of an
arbitrary order m > 1 was studied in a series of our works, including those with S. K. Korovin,
and ended (see [2, 3]) with a complete description of Suslin’s sets of collections Λ+(A, f) and
Λ−(A, f), respectively, of the positive and negative exponents of all nontrivial solutions of system
(4), including the necessary case Λ−(A, f) = ∅.

For possible applications (dealing with the transformation of “absolutely unstable” differen-
tial systems into exponentially or conditionally stable ones), of greater interest is the opposite
anti-Perron effect (6) of changing by small perturbations (linear, both vanishing at infinity and ex-
ponentially decreasing; nonlinear of higher order of smallness) all positive characteristic exponents
of linear approximation (1n) into negative ones for the solutions of the perturbed system. In [4],
this effect is investigated for exponentially decreasing linear perturbations: it is proved that the
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linear systems (1n) with all positive exponents and the perturbed system (2n) with an infinitely
differentiable n× n-matrix Q(t) satisfying the condition

∥Q(t)∥ ≤ CQe
−σt, σ > 0, t ≥ t0, (6)

and with the characteristic exponents

λ1(A+Q) ≤ · · · ≤ λn−1(A+Q) < 0 < λn(A+Q) (7)

exist.
At the same time, the question formulated in this paper on the existence of system (2n) with

perturbation (6) and with a negative higher exponent λn(A + Q), remains open. Is it possible
under a more general perturbation Q(t) → 0, t → +∞ to realize simultaneously all the necessary
inequalities λi(A) > 0, λi(A+Q) < 0, i = 1, n ?

An affirmative answer contains the following

Theorem. For any parameters

λn ≥ · · · ≥ λ1 > 0, µ1 ≤ · · · ≤ µn < 0, 2 ≤ n ∈ N,

there exist:

1) a linear system (1n) with bounded infinitely differentiable coefficients and characteristic ex-
ponents λi(A) = λi, i = 1, n;

2) an infinitely differentiable n× n-matrix Q(t) → 0 as t → +∞ such that the perturbed system
(2n) has characteristic exponents λi(A+Q) = µi, i = 1, n.

The proof of this theorem reduces to the proofs of its two particular variants, respectively, in
two-dimensional and three-dimensional cases. In addition, just as in [4], first of all, we construct a
piecewise constant and bounded in the interval [t0,+∞) matrix A(t) of coefficients of system (1n)
with exponents λi(A) = λi, i = 1, n, and also the necessary piecewise constant n× n-perturbation
matrix Q(t) → 0, t → +∞ such that the perturbed system (2n) has characteristic exponents

λi(A+Q) = µi, i = 1, n.

Next, using the corresponding Gelbaum–Olmsted functions [1, p. 54], we redefine the matrices A(t)
and Q(t) in the intervals of very small length containing their discontinuity points in such a way
that they become infinitely differentiable and still remain bounded on the semi-axis [t0,+∞) (as
in the Perron effect itself), while retaining [5] the values   of the original and perturbed systems.
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Many natural processes in mathematical modeling can be described by the initial-boundary
value problems posed for nonlinear parabolic differential and integro-differential models (see, for
example, [3, 4, 8, 10, 13, 14, 16–18] and the references therein). Investigation and construction of
algorithms for approximate solutions to these problems are the actual sphere of contemporary
mathematical physics and numerical analysis.

A lot of scientific works are dedicated to the investigation and numerical resolution of integro-
differential models (see, for example, [3, 8, 10,14,16,18] and the references therein).

One type of integro-differential nonlinear parabolic model is obtained at the mathematical
simulation of processes of electromagnetic field penetration in the substance. Based on the Maxwell
system [12], this model at first appeared and was studied in [5]. Based on the works [1, 2, 5], the
models of such type are investigated in many works (see, for example, [6, 7, 9, 11, 15] and the
references therein). Equations and systems of such types still yield to the investigation for special
cases. In this direction, the latest and rather complete bibliography can be found in the following
monographs [8, 10].

Many scientific papers are devoted to the construction and investigation of discrete analogs of
the above-mentioned integro-differential models and for problems similar to them. There are still
many open questions in this direction.

The present work is dedicated to the investigation and approximate resolution of the initial-
boundary value problem for the following equation

∂U

∂t
+A1U +A2U +A3U = f(x, t),

where

A1U = − ∂

∂x

{[ t∫
0

(∂U
∂x

)2
dτ

]
∂U

∂x

}
,

A2U = −
[ 1∫

0

t∫
0

(∂U
∂x

)2
dτ dx

]
∂2U

∂x2
,

A3U = − ∂

∂x

[(∂U
∂x

)2 ∂U

∂x

]
.

The purpose of this note is to analyze such type of degenerate equation. In [9] unique solvabil-
ity and convergence of the semi-discrete scheme with respect to the spatial derivative and finite
difference scheme for ∂U/∂t + A1U + A3U = f(x, t) equation are studied. The present work is
dedicated to studying such questions for ∂U/∂t+A2U +A3U = f(x, t).
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So, the investigated problem has the following form. In the rectangle Q = (0, 1)× (0, T ) where
T is a fixed positive constant, we consider the following initial-boundary value problem:

∂U

∂t
−

[ 1∫
0

t∫
0

(∂U
∂x

)2
dτ dx

]
∂2U

∂x2
− ∂

∂x

[(∂U
∂x

)2 ∂U

∂x

]
= f(x, t), (1)

(0, t) = U(1, t) = 0, t ∈ [0, T ], (2)
U(x, 0) = U0(x), x ∈ [0, 1]. (3)

Here f = f(x, t), U0 = U0(x) are given functions of their arguments and U = U(x, t) is an
unknown function. It is necessary to mention that (1) is a degenerate type parabolic equation with
integro-differential and p-Laplacian term (p = 4).

Using one modification of the compactness method developed in [17] (see also [16]) the following
uniqueness and existence statement takes place.

Theorem 1. If f ∈ W 1
2 (Q), f(x, 0) = 0, U0, V0 ∈

◦
W 1

2(0, 1), then there exists the unique solution
U of problem (1)–(3) satisfying the following properties:

U ∈ L4(0, T ;
◦
W 1

4(0, 1) ∩W 2
2 (0, 1)),

∂U

∂t
∈ L2(Q),

√
T − t

∂2U

∂t∂x
∈ L2(Q).

Here usual well-known spaces are used.
In order to describe the space-discretization for problem (1)–(3), let us introduce nets:

ωh =
{
xi = ih, i = 1, 2, . . . ,M − 1

}
, ωh = {xi = ih, i = 0, 1, . . . ,M

}
with h = 1/M . The boundaries are specified by i = 0 and i = M . The semi-discrete approximation
at (xi, t) is designed by ui = ui(t). The exact solution of problem (1)–(3) at (xi, t) is denoted by
Ui = Ui(t) and is assumed to exist and be smooth enough.

Approximating the space derivatives by the differences:

ux,i =
ui+1 − ui

h
, ux,i =

ui − ui−1

h
, uxx,i =

ui−1 − 2ui + ui+1

h2
,

let us correspond to problem (1)–(3) the following semi-discrete scheme:

dui
dt

− h
M∑
l=1

t∫
0

(ux,l)
2dτuxx,i −

[
(ux,i)

2ux,i
]
x,i

= f(xi, t), i = 1, 2, . . . ,M − 1, (4)

u0(t) = uM (t) = 0, t ∈ [0, T ], (5)
ui(0) = U0,i, i = 0, 1, . . . ,M, (6)

which approximates problem (1)–(3) on smooth solutions with the first order of accuracy with
respect to h.

Problem (4)–(6) is a Cauchy problem for a nonlinear system of ordinary integro-differential
equations. It is not difficult to obtain the following estimate for (4)–(6)

∥u∥2h +
t∫

0

∥ux]|2h dτ < C,
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where

∥u∥2h = (u, u)h, (u, v)h =

M−1∑
i=1

uivih, ∥ux]|2h = (ux, ux]h, (ux, vx]h =

M∑
i=1

ux,ivx,ih.

So, the semi-discrete scheme (4)–(6) is stable with respect to initial data and the right-hand
side of equation (4).

Here and below in Theorem 2 by C a generic positive constant independent of the mesh pa-
rameter h is denoted. This estimate gives us the global existence of a solution to problem (4)–(6).

Using an approach of the work [7], here in Theorem 2 and below in Theorem 3 for the investi-
gation of the finite-difference scheme, the convergence of the approximate solutions is proved.

The following statement takes place.

Theorem 2. If problem (1)–(3) has a sufficiently smooth solution U = U(x, t), then the solution
u(t) = (u1(t), u2(t), . . . , uM−1(t)) of the semi-discrete scheme (4)–(6) tends to the solution U(t) =
(U1(t), U2(t), . . . , UM−1(t)) as h → 0 and the following estimate is true

∥u(t)− U(t)∥h ≤ Ch.

In order to describe the fully discrete analog of problem (1)–(3), let us construct a grid on the
rectangle Q. For using the time-discretization in equation (1), the net is introduced as follows
ωτ = {tj = jτ, j = 0, 1, . . . , J}, with τ = T/J and ωhτ = ωh × ωτ , uji = u(xi, tj).

Let us correspond to problem (1)–(3) the following implicit finite difference scheme:

uj+1
i − uji

τ
−
[
τh

M∑
l=1

j+1∑
k=1

(ukl )
2
]
uj+1
xx,i −

{[
(uj+1

x,i )2
]
uj+1
x,i

}
x,i

= f j+1
i , (7)

i = 1, 2, . . . ,M − 1, j = 0, 1, . . . , J − 1,

uj0 = ujM = 0, j = 0, 1, . . . , J, (8)
u0i = U0,i, i = 0, 1, . . . ,M. (9)

So, the system of nonlinear algebraic equations (7)–(9) is obtained, which approximates problem
(1)–(3) on the sufficiently smooth solution by the order O(τ + h).

As for the semi-discrete scheme (4)–(6), we easily obtain the estimate

max
0≤jτ≤T

∥uj∥2h +
J∑

k=1

∥ukx]|2hτ < C,

which guarantees the stability and solvability of scheme (7)–(9). It is proved also that system
(7)–(9) has a unique solution. Here and below C is a positive constant independent from time and
spatial steps τ and h.

The following main conclusion is valid for scheme (7)–(9).

Theorem 3. If problem (1)–(3) has a sufficiently smooth solution U = U(x, t), then the solution
uj = (uj1, u

j
2, . . . , u

j
M−1), j = 1, 2, . . . , J of the difference scheme (7)–(9) tends to the solution

U j = (U j
1 , U

j
2 , . . . , U

j
M−1), j = 1, 2, . . . , J as τ → 0, h → 0 and the following estimate is true

∥uj − U j∥h ≤ C(τ + h), j = 1, 2, . . . , J.

Note that for solving the difference scheme (7)–(9) Newton’s iterative process is used and various
numerical experiments are done. These experiments agree with theoretical research.
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It is well known that the Riemann function R(ξ, η; ξ1, η1) of second order general type linear
hyperbolic equations (operators)

Lu := uξη + a(ξ, η)uξ + b(ξ, η)uη + c(ξ, η)u = 0

is defined by the following way (see, for example, [1–3])

L∗R := Rξη − (aR)ξ − (bR)η + cR = 0, (1)

R
∣∣
ξ=ξ1

= exp

{ η∫
η1

a(ξ1, η2) dη2

}
, R

∣∣
η=η1

= exp

{ ξ∫
ξ1

b(ξ2, η1) dξ2

}
. (2)

It is also well known that problem (1), (2) is equivalently reduced to the Volterra-type integral
equation of the second kind, which, as is well known too, is unconditionally and uniquely solvable
for any right-hand side

R(ξ, η; ξ1, η1)−
ξ∫

ξ1

R(ξ2, η; ξ1, η1)b(ξ2, η) dξ2

−
η∫

η1

R(ξ, η2; ξ1, η1)a(ξ, η2) dη2 +

ξ∫
ξ1

dξ2

η∫
η1

R(ξ2, η2; ξ1, η1)c(ξ2, η2) dη2 = 1. (3)

In this paper, we will discuss the periodicity of the Riemann function. There is proved the
following

Theorem 1. For the periodicity of the Riemann function in the following sense

R(ξ + T1, η + T2; ξ1 + T1, η1 + T2) = R(ξ, η; ξ1, η1) (4)

it is necessary and sufficient that the following conditions

a(ξ + T1, η + T2) = a(ξ, η), b(ξ + T1, η + T2) = b(ξ, η), c(ξ + T1, η + T2) = c(ξ, η) (5)

hold.
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Proof. Sufficiency. Let us show that along with the function R(ξ, η; ξ1, η1) the solution of the
equation (3) is also the function R(ξ + T1, η + T2; ξ1 + T1, η1 + T2), with respect to the variables ξ
and η. Consider the following expression

R(ξ + T1, η + T2; ξ1 + T1, η1 + T2)−
ξ∫

ξ1

R(ξ2 + T1, η + T2; ξ1 + T1, η1 + T2)b(ξ2, η) dξ2

−
η∫

η1

R(ξ + T1, η2 + T2; ξ1 + T1, η1 + T2)a(ξ, η2) dη2

+

ξ∫
ξ1

dξ2

η∫
η1

R(ξ2 + T1, η2 + T2; ξ1 + T1, η1 + T2)c(ξ2, η2) dη2.

Using transformation of variables (ξ′2 := ξ2 + T1, η′2 := η2 + T2), the last expression can be
rewritten as follows

R(ξ + T1, η + T2; ξ1 + T1, η1 + T2)−
ξ+T1∫

ξ1+T1

R(ξ′2, η + T2; ξ1 + T1, η1 + T2)b(ξ
′
2 − T1, η) dξ

′
2

−
η+T2∫

η1+T2

R(ξ + T1, η
′
2; ξ1 + T1, η1 + T2)a(ξ, η

′
2 − T2) dη

′
2

+

ξ+T1∫
ξ1+T1

dξ′2

η+T2∫
η1+T2

R(ξ′2, η
′
2; ξ1 + T1, η1 + T2)c(ξ

′
2 − T1, η

′
2 − T2) dη

′
2,

which using the transformation of variables ξ′2 := ξ2+T1, η
′
2 := η2+T2 can be rewritten as follows

R(ξ + T1, η + T2; ξ1 + T1, η1 + T2)−
ξ+T1∫

ξ1+T1

R(ξ2, η + T2; ξ1 + T1, η1 + T2)b(ξ2, η + T2) dξ2

−
η+T2∫

η1+T2

R(ξ + T1, η2; ξ1 + T1, η1 + T2)a(ξ + T1, η2) dη2

+

ξ+T1∫
ξ1+T1

dξ2

η+T2∫
η1+T2

R(ξ2, η2; ξ1 + T1, η1 + T2)c(ξ2, η2) dη2 = 1. (6)

From (3) and (6) by virtue of the uniqueness theorem for the solution of the Volterra type
integral equation (3), we have that equality (4) is true.

Necessity. From the first equality of (2) and the periodicity condition (4), we obtain

exp

{ η∫
η1

a(ξ1, η2) dη2

}
= R(ξ1, η; ξ1, η1) = R(ξ1 + T1, η + T2; ξ1 + T1, η1 + T2)
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= exp

{ η+T2∫
η1+T2

a(ξ1 + T1, η2) dη2

}
= exp

{ η∫
η1

a(ξ1 + T1, η
′
2 + T2) dη

′
2

}

and, consequently,
η∫

η1

a(ξ1, η2) dη2 =

η∫
η1

a(ξ1 + T1, η
′
2 + T2) dη

′
2.

By differentiating the last equality with respect to the variable η, we get the first equality of
(5). Analogously can be obtained the second equality of (5).

Let now obtain the third equality of (5). Indeed, from (1), taking into account the fact that
R(ξ1, η1; ξ1, η1) = 1, we have

c(ξ1, η1) = −Rξη(ξ1, η1; ξ1, η1) + a(ξ1, η1)Rξ(ξ1, η1; ξ1, η1)

+ aξ(ξ1, η1) + b(ξ1, η1)Rη(ξ1, η1; ξ1, η1) + bη(ξ1, η1). (7)

Further, from (2) we obtain

Rξ(ξ1, η1; ξ1, η1) = b(ξ1, η1), Rη(ξ1, η1; ξ1, η1) = a(ξ1, η1). (8)

Considering equalities (7) and (8), we get

c(ξ1, η1) = −Rξη(ξ1, η1; ξ1, η1) + 2a(ξ1, η1)b(ξ1, η1) + aξ(ξ1, η1) + bη(ξ1, η1).

Therefore, due to the first and second of (5) and (4) equalities, the third equality of (5)
is obtained.
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The classical stability analysis based on Lyapunov functions is the main tool in the theory
of ordinary differential equations. However, applications of this method to functional differential
equations often encounters serious difficulties. A successful alternative, known as the “N. V. Azbelev
W -method”, is based on searching auxiliary equations instead of Lyapunov functionals. The W -
method is also efficient in studying various classes of stochastic delay differential equations.

However, application of the W -method to nonlinear functional equations remains less efficient,
even if N .V. Azbelev and P. M. Simonov formulated some general results for nonlinear deterministic
functional differential equations in their monograph [2].

In this work we study global Lyapunov stability of solutions of systems of nonlinear differential
Itô equations with delays. We describe a nonlinear modification of the W -method based on the
theory of inverse-positive matrices and provide sufficient conditions for the moment stability of
solutions in terms of the coefficients for rather general classes of Itô equations.

Let T = (Ω,F , (Ft)t≥0,P) be a stochastic basis consisting of a probability space (Ω,F ,P) and
an increasing, right-continuous family (a filtration) (Ft)t≥0 of complete σ-subalgebras of F . By E
we denote the expectation on this probability space.

We study the moment exponential stability of solutions to the following system of nonlinear Itô
differential equations with delay:

dx(t) =−
N∑
j=1

Aj(t)x(hj(t)) dt+ F
(
t, x(h01(t)), . . . , x(h

0
m0

(t))
)
dt

+
m∑
i=1

Gi
(
t, x(hi1(t), . . . , x(h

i
mi

(t)))
)
dBi(t) (t ≥ 0) (0.1)

with respect to the initial data

x(t) = φ(t) (t < 0), (0.1a)
x(0) = b, (0.1b)

where x = (x1, . . . , xn)
T is an unknown n-dimensional random process on the interval (−∞,∞)

called a solution to problem (0.1), (0.1a), (0.1b).
We assume that problem (0.1), (0.1a), (0.1b) satisfies the following
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Conditions 1:

• Aj = (ajsl)
n
s,l=1 are n × n-matrices, whose entries are progressively measurable (with respect

to the stochastic basis T ), scalar stochastic processes, the trajectories of which are almost
surely (a.s.) locally integrable for all j = 1, . . . , N .

• F ( · , u) = (F1( · , u1, . . . , um0), . . . , Fn( · , u1, . . . , um0))
T are progressively measurable, n-di-

mensional stochastic processes on the interval [0,∞) with a.s. locally integrable trajectories
for all u ∈ Rm0 , and F (t, · ) are P × µ-almost everywhere continuous functions on Rm0 ,
satisfying the condition F ( · , 0) = 0.

• For all i = 1, . . . ,m the functions Gi( · , u) = (Gi
1( · , u1, . . . , umi), . . . , G

i
n( · , u1, . . . , umi))

T

(u ∈ Rmi) are progressively measurable, n-dimensional stochastic processes on the interval
[0,∞) with a.s. locally square integrable trajectories, and Gi(t, · ) are P×µ-almost everywhere
continuous functions on Rmi , satisfying the condition Gi( · , 0) = 0.

• hj , j = 1, . . . , N , hij , i = 0, . . . ,m, j = 1, . . . ,mi are Borel measurable functions on [0,∞)

such that hj(t) ≤ t, j = 1, . . . , N , hij(t) ≤ t, i = 0, . . . ,m, j = 1, . . . ,mi (t ≥ 0) µ-almost
everywhere.

• φ is an F0-measurable n-dimensional stochastic process on the interval(−∞, 0).

• b is an F0-measurable n-dimensional random variable.

• For any initial conditions (0.1a) and (0.1b), which satisfy the above requirements, there exists
a unique strong global solution x(t, b, φ) to problem (0.1), (0.1b), i.e., a solution defined on
the initial stochastic basis and on the whole interval (−∞,∞).

The moment exponential stability is defined in

Definition 0.1. System (0.1) is called exponentially q-stable with respect to the initial data if
there are positive numbers c, λ such that all solutions x(t, b, φ) (t ∈ (−∞,∞)) of the initial value
problem (0.1), (0.1a), (0.1b) satisfy the estimate(

E|x(t, b, φ)|q
)1/q ≤ c exp{−λt}

((
E|b|q

)1/q
+ ess sup

ς<0

(
E|φ(ς)|q

)1/q)
(t ≥ 0).

The next definition is used in the main result of the paper.

Definition 0.2. An invertible matrix B = (bij)
m
i,j=1 is called inverse-positive if all entries of the

matrix B−1 are nonnegative.

According to [3], the matrix B will be inverse-positive if bij ≤ 0 for i, j = 1, . . . ,m, i ̸= j
and all diagonal minors of the matrix B are positive. In particular, matrices with strict diagonal
dominance and non-positive off-diagonal entriess are inverse-positive.

1 Sufficient stability conditions
As we have already mentioned, we study the moment stability of system (0.1) with respect to the
initial data by the W -method, which is based on auxiliary systems. Therefore, along with system
(0.1) we consider the following system of linear differential equations with random coefficients:

dx̂(t) = (−B(t)x̂(t) + f0(t)) dt+
n∑

i=1

fi(t) dBi(t) (t ≥ 0), (1.1)
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where x̂ = (x̂1, . . . , x̂n)
T is an unknown n-dimensional stochastic process on (−∞,∞), B(t) is

an n × n-matrix, the entries of which are scalar, progressively measurable stochastic processes on
[0,∞) with the a.s. locally integrable trajectories, while f0(t), fi(t) (i = 1, . . . , n) are n-dimensio-
nal, progressively measurable stochastic processes on [0,∞) with the a.s. locally square integrable
trajectories.

Lemma. The solutions x̂(t) of system (1.1) can be represented as

x̂(t) = X̂(t)x̂(0) +

t∫
0

X̂(t, ς)f0(ς) dς +

n∑
i=1

t∫
0

X̂(t, ς)fi(ς) dBi(ς) (t ≥ 0),

where X̂(t, ς) (t ≥ 0, 0 ≤ ς ≤ t) is the n × n-matrix, the columns of which are solutions of the
system dx̂(t) = B(t)x̂(t) dt (t ≥ 0), satisfying X̂(t, t) = E (t ≥ 0), while X̂(t) ≡ X̂(t, 0).

By using the auxiliary system (1.1) and the stated lemma, we can rewrite problem (0.1), (0.1a),
(0.1b) in the following equivalent form, where the unknown n-dimensional stochastic process x(t)
replaces the solution x(t) of system (0.1):

x(t) = X̂(t)b+ (Θ(x+ φ))(t) (t ≥ 0),

where

(Θ(x+ φ))(t) =

t∫
0

X̂(t, ς)
[
B(ς)x(ς)−

N∑
j=1

Aj(ς)(x(hj(ς)) + φ(hj(ς)))
]
dς

+

t∫
0

X̂(t, ς)F
(
ς, x(h01(ς)) + φ(h01(ς)), . . . , x(h

0
m0

(ς)) + φ(h0m0
(ς))

)
dς

+
m∑
i=1

t∫
0

X̂(t, ς)Gi
(
ς, x(hi1(ς)) + φ(hi1(ς)), . . . , x(h

i
mi

(ς)) + φ(himi
(s))

)
dBi(ς).

Given 1 ≤ q < ∞, λ > 0 and a stopping time η we introduce the following vectors:

• x(q, λ) = (x1(q, λ), . . . , xn(q, λ))
T , where

xi(q, λ) = sup
t≥0

(
E|eλtxi(t)|q

)1/q
, i = 1, . . . , n;

• x η(q, λ) = (xη1(q, λ), . . . , x
η
n (q, λ))T , where

x η
i (q, λ) = sup

t≥0

(
E|eλtx η

i (t)|
q
)1/q

, i = 1, . . . , n.

Assume that using some auxiliary equation (1.1) we obtain the following estimate:

Enx
η(q, λ) ≤ Cx η(q, λ) + c

((
E|b|q

)1/q
+ ess sup

ς<0

(
E|φ(ς)|q

)1/q)
en, (1.2)

where C is some nonnegative n×n-matrix, c ≥ 0, En is the identity n×n-matrix, en = (1, . . . , 1)T

is the n-dimensional vector, and 0 ≤ η ≤ ∞ is an arbitrary stopping time.
We remind that the stopping time [4] is a random variable η : Ω → [0,∞] satisfying the property

{ω ∈ Ω : η(ω) ≤ t} ∈ Ft for any t ≥ 0, while the “stopped” stochastic process zη(t) is defined by
zη(t) ≡ z(t ∧ η), where t ∧ η = min{t; η}.
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Theorem 1.1. Assume that 1 ≤ q < ∞ and Conditions 1 are satisfied. Assume further that
estimate (1.2) is satisfied for all admissible b, φ and any stopping time 0 ≤ η ≤ ∞.

Then system (0.1) is exponentially q-stable with respect to the initial data if the matrix En −C
is inverse-positive.

To be able to formulate the main result we need
Conditions 2:

• λ is some positive number;

• There exist nonnegative numbers τj , j = 1, . . . , N , τij , i = 0, . . . ,m, j = 1, . . . ,mi such that
0 ≤ t − hj(t) ≤ τj , j = 1, . . . , N , 0 ≤ t − hij(t) ≤ τij , i = 0, . . . ,m, j = 1, . . . ,mi (t ≥ 0)
µ-almost everywhere.

• There exist nonnegative numbers F
j
sl, j = 1, . . . ,m0, s, l = 1, . . . , n such that

∣∣Fs(t, u1, . . . , um0)
∣∣ ≤ m0∑

j=1

n∑
l=1

F
j
sl|ulj |, s = 1, . . . , n, t ≥ 0, P × µ-almost everywhere.

• There exist nonnegative numbers G
ij
sl , i = 1, . . . ,m, j = 1, . . . ,mi, s, l = 1, . . . , n such that

∣∣Gi
s(t, u1, . . . , umi)

∣∣ ≤ mi∑
j=1

n∑
l=1

G
ij
sl |ulj |,

s = 1, . . . , n, i = 1, . . . ,m, t ≥ 0, P × µ-almost everywhere.

• There are subsets Is ⊂ {1, . . . , N} (s = 1, . . . , n), positive numbers λs, s = 1, . . . , n and
nonnegative numbers a j

sl, j = 1, . . . , N , s, l = 1, . . . , n such that∑
j∈Is

ajss(t) ≥ λs, s = 1, . . . , n,

|ajsl(t)| ≤ a j
sl, j = 1, . . . , N, s, l = 1, . . . , n, t ≥ 0, P × µ-almost everywhere.

Stability conditions will be formulated in terms of the special n × n-matrix C, whose entries
are defined as follows:

css =
1

λs

[∑
j∈Is

a j
ssτj

( N∑
j=1

a j
ss + F ss +

cp√
τj

Gss

)
+

N∑
j=1,j /∈Is

a j
ss + F ss

]
+

cp√
2λs

Gss, s = 1, . . . , n,

csl =
1

λs

[∑
j∈Is

a j
ssτj

( N∑
j=1

a j
sl + F sl +

cp√
τj

Gsl

)
+

N∑
j=1

a j
sl + F sl

]
+

cp√
2λs

Gsl, s, l=1, . . . , n, s ̸= l,

where

F sl =

m0∑
j=1

F
j
sl, Gsl =

m∑
i=1

mi∑
j=1

G
ij
sl , s, l = 1, . . . , n.

Here the constant cp comes from the estimate

(
E

∣∣∣∣
t∫

0

f(ς) dB(ς)
∣∣∣∣2p)1/(2p)

≤ cp

(
E

( t∫
0

|f(ς)|2dς
)p)1/(2p)

, (1.3)
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where f(ς) is an arbitrary scalar, progressive measurable stochastic process and B(ς) is the scalar
Wiener process. Estimate (1.3) follows from the inequality mentioned in [4, p. 65], where the
expressions for cp can be found as well.

Theorem 1.2. Let 1 ≤ p < ∞ and Conditions 1-2 be satisfied. If the matrix En − C is
inverse positive, then system (0.1) is exponentially 2p-stable with respect to initial data for any
0 < λ < min{λs, s = 1, . . . , n}.

2 An example
Let us fix a number 1 ≤ p < ∞ and consider the system of nonlinear Itô equations

dx(t) = −
N∑
j=1

Ajx(t− hj) dt+

m0∑
j=1

A0jxα
0
j (t− h0j ) dt+

m∑
i=1

mi∑
j=1

Aijxα
i
j (t− hij) dBi(t) (t ≥ 0), (2.1)

where Aj = (ajsl)
n
s,l=1, j = 1, . . . , N , Aij = (aijsl)

n
s,l=1, i = 0, . . . ,m, j = 1, . . . ,mi are real n × n-

matrices, hj ≥ 0, j = 1, . . . , N , hij ≥ 0, i = 0, . . . ,m, j = 1, . . . ,mi are real numbers, and αi
j ,

i = 0, . . . ,m, j = 1, . . . ,mi are real numbers satisfying the inequalities 0 < αi
j ≤ 1, i = 0, . . . ,m,

j = 1, . . . ,mi.
Assume that

N∑
j=1

ajss = λs > 0, s = 1, . . . , n

and

F sl =

m0∑
j=1

|a0jsl |, Gsl =

m∑
i=1

mi∑
j=1

|aijsl|, s, l = 1, . . . , n,

and the n× n-matrix En − C is inverse-positive, where C consists of the following entries:

csl =
1

λs

[ N∑
j=1

|ajss|hj
( N∑

j=1

|ajsl|+ F sl +
cp√
hj

Gsl

)
+

N∑
j=1

|ajsl|+ F sl

]
− cp√

λs
Gsl, s, l = 1, . . . , n.

Then from Theorem 1.2 it follows that the nonlinear system (2.1) is exponentially 2p-stable with
respect to the initial data.
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1 Introduction
In the paper, we consider the qualitative behavior of a nonlinear wave equation with a non-smooth
interaction function that recognizes external bounded disturbances. It is proved that the global
attractor of the multivalued semiflow generated by the solutions of the undisturbed problem is
stable in the sense of ISS with respect to the disturbances.

The qualitative behavior of infinite-dimensional evolutionary systems without uniqueness, i.e.,
when, along with global solvability, non-unity of the solution of the initial boundary value problem
is also possible, began to be actively studied within the framework of the theory of attractors from
the end of the 90s of the last century [9, 14, 15, 17, 21]. It turned out that for broad classes of
evolutionary objects, under fairly general conditions for the parameters, it is possible to establish
the existence in the phase space of a compact uniformly attracting set (be) the global attractor.
Its stability in relation to disturbances has been studied in works [1–4, 7, 8, 10, 12]. The theory of
input to state stability (ISS), which characterizes the deviation of solutions of a perturbed problem
from an asymptotically stable equilibrium position [6,16,19,20], was applied to infinite-dimensional
dissipative systems with a nontrivial attractor in works [5, 11, 18]. In particular, the property of
local input to state stability (local ISS) and the property of asymptotic gain (AG) for semi-linear
parabolic and wave equations, provided that the Cauchy problem is correct, have been established.

In this paper, for the first time, the AG property was obtained for the global attractor of a
dynamic system without uniqueness (m-semiflow), generated by the solutions of a nonlinear wave
equation with a non-smooth interaction function.

2 Setting of the problem and the main results
In a bounded domain Ω ⊂ Rn, we consider the problem{

ytt + αyt −4y + f(y) = 0, t > 0,

y
∣∣
∂Ω

= 0,
(2.1)

where α > 0, f ∈ C(R),

∃ c > 0 ∀ s ∈ R |f(s)| ≤ c
(
1 + |s|

n
n−2

)
, (2.2)

lim
s→∞

f(s)

s
> −λ1, (2.3)
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where λ1 > 0 is the first eigenvalue of the operator −4 in H1
0 (Ω). Then it is known [1] that in the

phase space
X = H1

0 (Ω)× L2(Ω)

problem (2.1) for every z0 =

(
y0
y1

)
∈ X has a (perhaps non-unique) solution z( · ) =

(
y( · )
yt( · )

)
∈

C([0,+∞);X), z(0) = z0, and all solutions (2.1) generate a multivalued semiflow (m-semiflow)
G : R+ ×X 7→ 2X ,

G(t, z0) =
{
z(t) : z( · ) is the solution of (2.1), z(0) = z0

}
,

for which there is a global attractor in X.

Definition 2.1 ([14]). Let G be a m-semiflow, i.e.,

∀x ∈ X, ∀ t, s ≥ 0 G(0, x) = x, G(t+ s, x) ⊂ G(t, G(s, t)).

A compact set Θ ⊂ X is called a global attractor G, if:

(1) Θ ⊂ G(t,Θ) ∀ t ≥ 0;

(2) for any bounded set B ⊂ X,

dist(G(t, B),Θ) → 0, t → ∞,

where here and in the future

G(t, B) =
⋃
z∈B

G(t, z),

dist(A,B) = sup
z1∈A

inf
z2∈B

‖z1 − z2‖X .

Now consider the disturbed problem{
ytt + αyt −4y + f(y) = h(x) · u(t), t > 0,

y
∣∣
∂Ω

= 0,
(2.4)

where h ∈ L2(Ω), u ∈ L∞(0,+∞) is the input (disturbing) signal.
Let’s mark

Su(t, 0, z0) =
{
z(t) : z( · ) is the solution of (2.4), z(0) = z0

}
.

The main result of the work is the establishment of the asymptotic gain (AG) property in
relation to the attractor Θ of the unperturbed (u ≡ 0) system [18]:

∃ γ ∈ K ∀ z0 ∈ X, ∀u ∈ U ⊆ L∞(0,+∞) : lim
t→∞

dist(Su(t, 0, z0),Θ) ≤ γ(‖u‖∞),

where U is some translationally invariant set of input signals, K is the class of continuous, mono-
tonically increasing functions with γ(0) = 0 [13],

‖u‖∞ = ess sup
t≥0

|u(t)|.
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3 Robust stability and attractors of multivalued semiflows
Let (X, ‖ · ‖X) be the Banach space, R≥ = {(t, τ) : t ≥ τ ≥ 0}, Σ be the arbitrary translation-
invariant set, i.e.,

∀σ ∈ Σ, ∀h ≥ 0 : σ( · + h) ∈ Σ.

Definition 3.1 ([2]). A family of multivalued mappings {Sσ : R≥×X 7→ 2X}σ∈Σ is called a family
of m-semi-processes if ∀σ ∈ Σ, ∀x ∈ X, ∀ t ≥ s ≥ τ ≥ 0, ∀h ≥ 0:

Sσ(τ, τ, x) = x,

Sσ(t, τ, x) ⊂ Sσ(t, s, Sσ(s, τ, x)),

Sσ(t+ h, τ + h, x) ⊂ Sσ( ·+h)(t, τ, x).

Let’s mark
SΣ =

⋃
σ∈Σ

Sσ.

Definition 3.2 ([2]). A compact set ΘΣ ⊂ X is called a uniform attractor {Sσ}σ∈Σ if for any
bounded set B ⊂ X,

dist
(
SΣ(t, 0, B),ΘΣ

)
→ 0, t → ∞

and ΘΣ is the minimal set in the class of such sets.

Remark 3.1. If Σ = {0}, then for G(t, x) := S0(t, 0, x) we have the properties:

G(0, x) = S0(0, 0, x) = x,

G(t+ s, x) = S0(t+ s, 0, x) ⊂ S0(t+ s, s, S0(s, 0, x)) ⊂ S0(t, 0, S0(s, 0, x)) = G(t, G(s, x)),

so G is the m-semiflow.

The following lemma guarantees the existence of a uniform attractor in {Sσ}σ∈Σ.

Lemma 3.1 ([2]). Let {Sσ}σ∈Σ be the family of m-semi-processes, Σ be the translation-invariant
subset of some metric space and the next conditions be fulfilled:

(1) there exists a bounded set B0 ⊂ X such that for any bounded set B ⊂ X exists T = T (B)
such that

∀ t ≥ T SΣ(t, 0, B) ⊂ B0;

(2) ∀ {σn} ⊂ Σ, ∀ tn ↗ ∞, ∀ limited sequence {xn} ⊂ X sequence {ξn ∈ Sσn(tn, 0, xn)}n≥1 is
precompact.

Then {Sσ}σ∈Σ has a uniform attractor ΘΣ.
If, in addition, the next condition is satisfied:

(3) the mapping Σ×X 3 (σ, x) 7→ Sσ(t, 0, x) ⊂ X has a closed graph, then

ΘΣ ⊂ SΣ(t, 0,ΘΣ).

Remark 3.2. In condition 1) it can be assumed that B0 = {x ∈ X| ‖x‖X ≤ R0}.

Remark 3.3. For the Σ = {0} conditions 1)-3) have the form:

∀ t ≥ T G(t, B) ⊂ B0,

every sequence ξn ∈ G(tn, B) is precompact, the mapping x 7→ G(t, x) has a closed graph; and
guarantee [14] that Θ := Θ{0} is a global attractor m-semiflow G.
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Theorem 3.1. Let for each u ∈ U ⊂ L∞(R+) there exist a translation-invariant set Σ(u) such
that the family m-semi-processes {Sσ}σ∈Σ(u) satisfies conditions (1)–(3) of Lemma 3.1,

Σ(0) = {0}, ∀u ∈ U u ∈ Σ(u),

∀ r0 > 0 there exists the set B0 such that condition (1) of Lemma 3.1 is fulfilled ∀ ‖u‖∞ ≤ r0, i.e.,

∃T = T (r0, B) ∀ t ≥ T
⋃

∥u∥∞≤r0

SΣ(u)(t, 0, B) ⊂ B0, (3.1)

and in addition, the next conditions are met

(1)
‖uk‖∞ → 0, tk → ∞ =⇒ ξk ∈ SΣ(uk)(tk, 0, B0)

is precompact,

(2)
‖uk‖∞ → 0, xk → x, ξk ∈ SΣ(uk)(t, 0, xk), ξk → ξ =⇒ ξ ∈ S0(t, 0, x).

Then
∃ γ ∈ K ∀x ∈ X, ∀u ∈ U lim

t→∞
dist(Su(t, 0, x),Θ) ≤ γ(‖u‖∞).

4 Application for the disturbed wave equation
We consider a perturbed problem (2.4). Let’s strengthen condition (2.3) to the following:

∃ c1, c2, c3 > 0 such that for F (s) :=
s∫
0

f(p) dp for all s ∈ R next inequalities are fulfilled

F (s) ≥ −ms2 − c1, f(s) · s− c2F (s) +ms2 ≥ c3, (4.1)

where m ∈ (0, λ1) is small enough.

Under conditions (2.2), (4.1) it is known [2] that ∀ τ ≥ 0, ∀ zτ ∈ X, ∀u ∈ L2
loc(R+) problem

(2.4) has at least one solution z ∈ C([τ,+∞);X) : z(τ) = zτ . Moreover, the family of mappings
{Su : R≥ ×X 7→ 2X} such that

Su(t, τ, zτ ) =
{
z(t) : z( · ) is the solution of (2.4) and z(τ) = zτ

}
(4.2)

generates a family of m-semiprocesses for any translation-invariant U ⊂ L2
loc(R+). In addition, for

every solution (2.4) z =

(
y
yt

)
the next evaluation is fair:

‖yt(t)‖2L2 + ‖y(t)‖2H1
0
≤ c4

((
‖yt(τ)‖2L2 + ‖y(τ)‖

2n−2
n−2

H1
0

)
· e−δ(t−τ) + 1 +

t∫
τ

|u(p)|2e−δ(t−p) dp

)
∀ t ≥ τ ≥ 0,

where c4 > 0, δ > 0 do not depend on z.
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In particular, if sup
t≥0

t+1∫
t

|u(p)|2 dp < ∞, then ∀ t ≥ τ ≥ 0,

‖z(t)‖2X ≤ c5

(
‖z(τ)‖

2n−2
n−2

X · e−δ(t−τ) + 1 + sup
t≥0

t+1∫
t

|u(p)|2 dp
)
. (4.3)

As U , we choose all functions from L∞(R+) for which

sup
t≥0

t+1∫
t

|u(s+ l)− u(s)|2 ds ≤ κ(|l|), (4.4)

where κ may depend on u and κ(p) → 0, p → 0+.
It is known [2] that ∀u ∈ U the set

Σ(u) := clL2
loc

{
u( · + h)|, h ≥ 0

}
is translation invariant and compact in L2

loc(R+), u ∈ Σ(u), Σ(0) = {0} and, in addition,

sup
t≥0

t+1∫
t

|v(s)|2 ds ≤ sup
t≥0

t+1∫
t

|u(s)|2 ds ≤ ‖u‖2∞ ∀ v ∈ Σ(u). (4.5)

If condition (4.4) is fulfilled, the family of m-semi-processes {Sv}v∈Σ(u), defined in (4.2), satisfies
conditions (1)–(3) of Lemma 3.1, and therefore has a uniform attractor ΘΣ(u). At the same time,
due to (4.3) and (4.5), condition (3.1) is fulfilled.

Theorem 4.1. Let the parameters of the disturbed problem (2.4) satisfy conditions (2.2), (4.1),
and (4.4). Then

∃ γ ∈ K ∀ z0 ∈ X, ∀u ∈ U lim
t→∞

dist(Su(t, 0, z0),Θ) ≤ γ(‖u‖∞),

where Θ is the global attractor of the undisturbed problem (2.1).
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1 Introduction
The intensive development of science and technology regularly stimulates the search for effective
methods for control of various natural, economic, social, and technical processes. Mathematical
models of such situations are problems of optimal control of various classes of evolutionary systems.
Considerable attention is paid to mathematical models of processes in the form of differential
equations and inclusions with a small parameter. For their solution, asymptotic methods are
widely used, in particular, the averaging method, the strict mathematical justification of which was
proposed by M. M. Krylov and M. M. Bogolyubov. In works of V. A. Plotnikov and works of his
school (see, for example, [12]) there is the strict justification of the averaging method in application
to control problems.

It is known that the averaging method is one of the most effective tools for solving various
optimal control problems for differential equations [4, 5, 8, 9] as well as for differential inclusions
with fast oscillating coefficients [6, 7, 13]. The Krasnoselski-Krein theorem [8] and its multi-valued
analogue [11] play an essential role for investigation of above-mentioned problems. The concept
of integral continuity plays a key role in investigation of the considered optimal control problem
using averaging method, since the existence of the limit when we pass to aversged coefficients is
equivalent to the integral continuity.

In the present paper we consider the optimal control problem of a non-linear system of differ-
ential inclusions with fast oscillating parameters. First, we prove the existence of solutions for the
initial perturbed optimal control problem and corresponding problem with averaged coefficients.
Then we prove that optimal control of the problem with averaging coefficients can be considered
as “approximately” optimal for the initial perturbed one.

2 Setting of the problem and main results
Let us consider an optimal control problem

ẋ(t) ∈ X
( t

ε
, x(t), u(t)

)
, t ∈ (0, T ),

x(0) = x0, u( · ) ∈ U,

J [x, u] =

T∫
0

L(t, x(t), u(t)) dt+Φ(x(T )) → inf .

(2.1)

Here ε > 0 is a small parameter, x : [0, T ] → R is an unknown phase variable, u : [0, T ] → Rm is an
unknown control function, X : R+×Rn×Rm → conv(Rn) is a multi-valued function, U ⊂ L2(0, T )
is a fixed set.
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Assume that uniformly with respect to x for every u ∈ Rm

distH

(
1

s

s∫
0

X(τ, x, u) dτ, Y (x, u)

)
→ 0, s → ∞, (2.2)

where limits for multi-valued function are considered in the sense of [1, 3], distH is the Hausdorff
metric, Y : Rn × Rm → conv(Rn), and the integral of multi-valued function is considered in the
sense of Aumann [2]. We consider the following problem with averaged right hand side:

ẏ(t) ∈ Y (y(t), u(t)),

y(0) = x0, u( · ) ∈ U,

J [x, u] =

T∫
0

L(t, y(t), u(t)) dt+Φ(x(T )) → inf .

(2.3)

Under the natural assumptions on X, L, Φ, U we will show that problems (2.1) and (2.3) have
solutions {xε, uε} and {y, u}, respectively,

Jεn → J, εn → 0,

where Jεn := J [xεn , uεn ], J := [y, u], and up to a subsequence

uεn → u in L2(0, T ),

xεn → y in C([0, T ]).

In what follows we consider the problem of finding an approximate solution of (2.1) by transition
to averaged coefficients. We note that the transition to the averaging parameters can essentially
simplify the problem.

Let us consider some assumptions and notations regarding parameters of our problem.
Let Q = {t ≥ 0, x ∈ Rn, u ∈ Rm} and assume the following assumptions hold.

Condition 2.1. Mapping t, x, u 7→ X(t, x, u) is continuous in Hausdorff metric.

Condition 2.2. Multi-valued function X(t, x, u) satisfies the growth property: ∃M > 0 such that

‖X(t, x, u)‖+ ≤ M(1 + ‖x‖) ∀ (t, x, u) ∈ Q,

where
‖X(t, x, u)‖+ = sup

ξ∈X(t,x,u)
‖ξ‖,

‖ξ‖ is the Euclidian norm of ξ ∈ Rn;

Condition 2.3. Multi-valued function X(t, x, u) satisfies the Lipschitz condition: ∃λ > 0 such
that

distH
(
X(t, x1, u1), X(t, x2, u2)

)
≤ λ

(
‖x1 − x2‖+ ‖u1 − u2‖

)
.

Condition 2.4. Mapping (x, u) 7→ L(t, x, u) is a continuous one, moreover, function t 7→ L(t, x, u)
is measurable ∀x ∈ Rn, u ∈ Rm, and

|L(t, x, u)| ≤ c(t)
(
1 + ‖u‖

)
,

where c( · ) ∈ L2(0, T ) is a given function.
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Condition 2.5. Φ : Rn → R is a continuous function.

Condition 2.6. U ⊂ L2(0, T ) is a compact set.

Condition 2.7. Let D and D′ be two domains in Rn. We suppose that the embedding D′+δB ⊂ D
is fulfilled for some δ > 0, where B = {x ∈ Rn : ‖x‖ ≤ 1}.

Let us note that under Conditions 2.1–2.3 for all u ∈ L2(0, T ) the Cauchy problemẋ ∈ X
( t

ε
, x, u

)
, t ∈ (0, T )

x(0) = x0
(2.4)

has a solution, that is there exists an absolutely continuous function x : [0, T ] → Rn satisfying the
inclusion (2.4) a.e.

Under condition (2.2) the multi-valued mapping Y satisfies the Conditions 2.1–2.3, hence ∀u ∈
L2(0, T ) the Cauchy problem {

ẏ ∈ Y (y, u), t ∈ (0, T )

y(0) = x0
(2.5)

has a solution.
Taking into account conditions for parameters of problem we can show the existence of solu-

tions for the initial perturbed optimal control problem and corresponding problem with averaged
coefficients. Namely, we have the next

Theorem 2.1. Under Conditions 2.1–2.6 problem (2.1) (resp. problem (2.3)) has the solution
{xε, uε} (resp. {y, u}).

It worth noting the multi-valued analogue of Krasnoselski–Krein theorem [8,10,11,13] plays an
essential role for investigation of the above-mentioned problems. Let us make sure that optimal
control of the problem with averaging coefficients can be considered as “approximately” optimal
for the initial perturbed one.

Theorem 2.2. Suppose that for all u( · ) ∈ U problem (2.5) has a unique solution. Under Condi-
tions 2.1–2.6 and (2.2) we have

Jεn = J [xεn , uεn ] → J := J [y, u] as εn → 0

and up to a subsequence

uεn → u in L2(0, T ), εn → 0,

xεn → y in C(0, T ), εn → 0,

where {xεn , uεn} is the solution of (2.1) and {y, u} is the solution of (2.3).
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This paper considers a system of M linear matrix differential equations with coefficients, de-
picted in the form of absolutely and uniformly convergent Fourier series with slowly variable in a
certain sense coefficients and with the frequency (class F ). This system is close to the block-diagonal
system with slowly changing coefficients. We are looking for a transformation with coefficients of a
similar type which brings this system to purely block-diagonal form. Regarding the coefficients of
this transformation, chews a quasi-linear system of matrix differential equations, which decays on
M independent subsystems, each of which has the form of some auxiliary nonlinear systems. We
obtained conditions of existence of the desired transformation for this auxiliary system in a critical
case.

1 Basic notation and definitions
Let

G(ε0) =
{
(t; ε) : t ∈ R, ε ∈ [0; ε0), ε0 ∈ R∗

}
.

Definition 1.1. Let’s say that the function p(t; ε) belongs to the class S(m; ε0) if the following
conditions are true

(1) p : G(ε0) → C;

(2) p(t; ε) ∈ Cm(G(ε0)) for t;

(3)
dkp(t; ε)

dtk
= εkpk(t; ε) (0 6 k 6 m),

where
∥p∥S(m;ε0)

def
=

m∑
k=0

sup
G(ε0)

|pk(t; ε)| < +∞.

Definition 1.2. Let’s say that the function f(t; ε; θ(t; ε)) belongs to the class F (m; ε0; θ) (m ∈
N ∪ {0}), if this function can be represented in the following form:

f(t; ε; θ(t; ε) =
+∞∑

n=−∞
fn(t; ε) exp(inθ(t; ε)),

where

(1) fn(t; ε) ∈ S(m; ε0) (n ∈ Z);

(2)

∥f∥F (m;ε0;θ)
def
=

+∞∑
n=−∞

∥fn∥S(m;ε0) < +∞;
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(3)

θ(t; ε) =

t∫
0

φ(τ ; ε) dτ, φ ∈ R∗, φ ∈ S(m; ε0), inf
G(ε0)

φ(t; ε) = φ0 > 0.

Definition 1.3. Let’s say that the matrix A(t; ε) = (ajk(t; ε))j,k=1,N belongs to the class S2(m; ε0)

(m ∈ N ∪ {0}), in case ajk ∈ S(m; ε0) (j, k = 1, N).
Let’s define the norm

∥A(t; ε)∥S2(m;ε0)
def
= max

16j6N

N∑
k=1

∥ajk(t; ε)∥S(m;ε0).

Definition 1.4. Let’s say that the matrix B(t; ε; θ) = (bjk(t; ε; θ))j,k=1,N belongs to the class
F2(m; ε0; θ) (m ∈ N ∪ {0}), in case bjk(t; ε; θ) ∈ F (m; ε0; θ) (j, k = 1, N).

Let’s define the norm

∥B(t; ε; θ)∥F2(m;ε0;θ)
def
= max

16j6N

N∑
k=1

∥bjk(t; ε; θ)∥F (m;ε0;θ).

Note that in case B1 ∈ F2(m; ε0; θ), B2 ∈ F2(m; ε0; θ), the following conditions are true:

(1) B1 +B2, B1B2 ∈ F2(m; ε0; θ),

(2) ∥B1 +B2∥F2(m;ε0;θ) ≤ ∥B1∥F2(m;ε0;θ) + ∥B2∥F2(m;ε0;θ),

(3) ∥B1B2∥F2(m;ε0;θ) ≤ 2m∥B1∥F2(m;ε0;θ) · ∥B2∥F2(m;ε0;θ).

2 Statement of the problem
The following system of linear matrix equations is considered

dXj

dt
= Aj(t, ε)Xj + µ

M∑
k=1

Bjk(t, ε, θ)Xk, j = 1,M, (2.1)

where Xj are unknown square matrices of the order N , belonging to some closed bounded region
D ⊂ CN×N , CN×N is the space of complex-valued matrices of dimension (N × N). Also, let
Aj(t, ε) ∈ S2(m; ε0), Bkj(t, ε, θ) ∈ F2(m; ε0; θ), µ ∈ (0, 1) be real parameter.

We are looking for the transformation

Xj = Yj +
M∑
k=1
k ̸=j

Qjk(t, ε, θ(t, ε), µ)Yk, j = 1,M, (2.2)

in which Qjk(t, ε, θ(t, ε), µ) (j, k = 1,M) are unknown square matrices of dimension N × N that
belong to the class F2(m1; ε1; θ) (m1 ≤ m0; ε1 ≤ ε0) which brings system (2.1) to the form

dYj
dt

= Vj(t, ε, θ, µ)Yj , (2.3)

where Vj(t, ε, θ, µ) ∈ F2(m1; ε0; θ).
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Using transformation (2.2) with respect to unknown functions Qjk(t, ε, θ, µ) (j = 1,M) we will
get the system

dQjk

dt
= Aj(t, ε)Qjk −QjkAk(t, ε) + µ(Bjj(t, ε, θ)Qjk −QjkBkk(t, ε, θ))

+ µBjk(t, ε, θ) + µ

M∑
s=1

s ̸=j, s ̸=k

Bjs(t, ε, θ)Qsk − µQjk

M∑
s=1
s ̸=k

Bks(t, ε, θ)Qsk, j, k = 1,M, j ̸= k. (2.4)

So, system (2.1) turns into

dYj
dt

= Vj(t, ε, θ, µ)Yj =
(
µBjj(t, ε, θ) + Λ(t, ε) +

M∑
s=1
s ̸=j

Bjs(t, ε, θ)Qsj

)
Yj , j = 1,M. (2.5)

The following lemma takes place.
Lemma 2.1. Let the matrices Aj(t, ε) (j = 1,M) in system (2.4) be such that there are matrices
Lj(t, ε) (j = 1,M), for which the following conditions are true:

(1) Lj(t, ε) ∈ S2(m; ε) (j = 1,M);

(2) | det(Lj(t, ε))| ≥ a0 > 0 (j = 1,M);

(3)
L−1
j (t, ε)Aj(t, ε)Lj(t, ε) = △j(t, ε) (j = 1,M),

in which △j(t, ε) (j = 1,M) – lower triangular matrices of the N th order of the class
S2(m; ε0).

Then using the transformation
Qjk = Lj(t, ε)YjkL

−1
k (t, ε) (j, k = 1,M, j ̸= k), (2.6)

system (2.4) is reduced to the next system

dYjk
dt

= △j(t, ε)Yjk − Yjk △k (t, ε)− L−1 dLj

dt
Yjk − YjkL

−1
k (t, ε)

dLk

dt

+ µ(L−1
j (t, ε)Bjj(t, ε, θ)Lj(t, ε)Yjk − YjkL

−1
k (t, ε)Bkk(t, ε, θ)Lk(t, ε))

+ µL−1
j (t, ε)Bjk(t, ε, θ)Lk(t, ε) + µ

M∑
s=1

s ̸=j, s ̸=kc

L−1
j (t, ε)Bjs(t, ε, θ)Ls(t, ε)Ysk

− µYjk

M∑
s=1
s̸=kc

L−1
k Bks(t, ε, θ)Ls(t, ε)Ysk, j, k = 1,M (j ̸= k). (2.7)

3 Main results
Lemma 3.1. Let the following system of matrix differential equations be given:

dYj
dt

= Dj1(t, ε)Qjk −QjkDj2(t, ε) + µFj(t, ε, θ) + µ
M∑
s=1

Pjs1(t, ε, θ)YsPjs2(t, ε, θ)

− µYj

M∑
s=1

Rjs1(t, ε, θ)YsRjs2(t, ε, θ)− εHj1(t, ε)Yj − εYjHj2(t, ε), j = 1,M, (3.1)
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where Dj1(t, ε) = (dj1αβ(t, ε))α,β=1,N , Dj2(t, ε) = (dj2αβ(t, ε))α,β=1,N – lower triangular matrices of
the class S2(m; ε0), Fj(t, ε, θ), Pjs1(t, ε, θ), Pjs2(t, ε, θ), Rjs1(t, ε, θ), Rjs2(t, ε, θ) is in the class
F2(m; ε0; θ), Hj1(t, ε), Hj2(t, ε) are in the class S2(m − 1; ε0),µ ∈ (0, 1) is a real parameter. And
let the conditions be fulfilled:

(10)

inf
G(ε0)

∣∣dj1αβ(t, ε)− dk1αβ(t, ε)− inφ(t, ε)
∣∣ ≥ b0 > 0,

inf
G(ε0)

∣∣dj2αβ(t, ε)− dk2αβ(t, ε)− inφ(t, ε)
∣∣ ≥ b0 > 0 ∀n ∈ Z, j, k = 1, N, j ̸= k.

(20)

dj1αβ(t, ε)− dk2αβ(t, ε) = iωjk(t, ε), ωjk(t, ε) ∈ R,

inf
G(ε0)

|ωjk(t, ε)− nφ(t, ε)| ≥ b0 > 0 ∀n ∈ Z, j, k = 1, N.

Then there exist constants µ1 ∈ (0;µ0), ε2 ∈ (0;µ0) such that for all µ ∈ [0;µ2) and for all
ε ∈ (0, ε2), system (3.1) has a partial solution of the class F2(m− 1; ε2; θ).

Condition (20) shows that in this case we are dealing with critical by chance, as opposed to
work [8], in which it is assumed that∣∣Re (dj1αβ(t, ε)− dk2αβ(t, ε))

∣∣ ≥ γ > 0 (j = 1,M, k = 1, N).

The next theorem takes place.

Theorem 3.1. Let system (2.4) satisfy the conditions of Lemma 3.1, and let system (2.7), obtained
by transformation (2.6), for each k = 1,M satisfy all the conditions of Lemma 3.1. Then there
exist µ4 ∈ (0; 1), ε4(µ) ∈ (0; ε0) such that for all µ ∈ (0; ε4) and for all ε ∈ (0; ε4(µ)) there exists
the transformation of the form (2.2), in which the coefficients Qjk(t, ε, θ(t, ε), µ) belong to the class
F2(m− 1; ε4(µ); θ), that brings system (2.1) to the form (2.3), in which Vj(t, ε, θ, µ) are determined
by formulas (2.5).

For matrix systems of this type, such a result was not obtained before. In previous works [9] a
matrix differential equation was considered:

dX

dt
= A(t, ε)X −XB(t, ε) + P (t; ε0; θ) + µΦ(t; ε0; θ;X), (3.2)

where X is an unknown square matrix of order N , that belongs to some closed limited area D ⊂
CN×N , where CN×N is the space of complex-valued matrices of dimention N ×N , A(t; ε), B(t, ε) ∈
S2(m; ε0), P (t; ε0; θ) ∈ F2(m; ε0; θ). It is also assumed that Φ(t; ε0; θ;X) is a matrix-function that
belongs to the class F2(m; ε0; θ) with respect to m, ε0, θ and is continuous over X in D. µ is a real
parameter.

For equation (3.2) in the critical case, the issue of the presence of partial class solutions was
studied F (m1; ε1; θ) (m1 ≤ m; ε1 ≤ ε0).

The results of the works [1–7,10] were used for obtaining our results.
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In Euclidean space Rn+1 of variables x = (x1, . . . , xn) and t consider a nonlinear system of
partial differential equations of the form

Lfu :=
∂4ku

∂t4k
−

n∑
i,j=1

Aij
∂2u

∂xi∂xj
+ f(u) = F, (1)

where f = (f1, . . . , fN ), F = (F1, . . . , FN ) are the given and u = (u1, . . . , uN ) is an unknown vector
functions, N ≥ 2; Aij are the given constant quadratic matrices of order N , besides Aij = Aji,
i, j = 1, . . . , n, n ≥ 2, k is a natural number.

For system (1) consider the following boundary value problem: in cylindrical domain DT :=
Ω× (0, T ), where Ω is an open Lipschitz domain in Rn, find a solution u = u(x, t) to system (1.1)
according to the following boundary conditions

u
∣∣
Γ
= 0, (2)

∂iu

∂ti

∣∣∣
Ω0∪ΩT

= 0, i = 0, . . . , 2k − 1, (3)

where Γ := ∂Ω×(0, T ) is a lateral face of the cylinder DT , Ω0 : x ∈ Ω, t = 0 and ΩT : x ∈ Ω, t = T
are upper and lower bases of this cylinder, respectively.

Denote by C2,4k(DT ) the space of continuous in DT vector functions u = (u1, . . . , uN ), having
continuous in DT partial derivatives ∂u

∂xi
, ∂2u
∂xi∂xj

, ∂lu
∂tl

, i, j = 1, . . . , n; l = 1, . . . , 4k. Let

C2,4k
0 (DT , ∂DT ) :=

{
u ∈ C2,4k(DT ) : u

∣∣
Γ
= 0,

∂iu

∂ti

∣∣∣
Ω0∪ΩT

= 0, i = 0, . . . , 2k − 1

}
.

Consider the Hilbert space W 1,2k
0 (DT ), which is obtained by completion with respect to the

norm

∥u∥2
W 1,2k

0 (DT )
=

∫
DT

[
|u|2 +

2k∑
i=1

∣∣∣∂iu

∂ti

∣∣∣2 + n∑
i=1

∣∣∣ ∂u
∂xi

∣∣∣2] dx dt (4)

of the classical space C2,4k
0 (DT , ∂DT ), where | · | is the norm in the space RN .

Remark 1. From (4) it follows that if u ∈ W 1,2k
0 (DT ), then u ∈

◦
W 1

2(DT ) and ∂iu
∂ti

∈ L2(DT ),
i = 1, . . . , 2k. Here W 1

2 (DT ) is a well-known Sobolev space consisting of elements from L2(DT )
and having generalized partial derivatives of the first order from L2(DT ), and

◦
W 1

2(DT ) =
{
u ∈ W 1

2 (DT ) : u|∂DT
= 0

}
,

where the equality u|∂DT
= 0 must be understood in the sense of the trace theory.
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Below, we impose on nonlinear vector function f = (f1, . . . , fN ) from (1) the following require-
ments

f ∈ C(RN ), |f(u)| ≤ M1 +M2|u|α, u ∈ RN , (5)
where Mi = const ≥ 0, i = 1, 2, and

0 ≤ α = const <
n+ 1

n− 1
. (6)

Remark 2. The embedding operator I : W 1
2 (DT ) → Lq(DT ) represents a linear continuous com-

pact operator for 1 < q < 2(n+1)
n−1 , n > 1. At the same time the Nemitsky operator K : Lq(DT ) →

L2(DT ), acting by the formula Ku = f(u), where u = (u1, . . . , uN ) ∈ Lq(DT ) and vector fun-
ction f = (f1, . . . , fN ) satisfies condition (5), is continuous and bounded if q ≥ 2α. Therefore, if
α < n+1

n−1 , then there exists such number q that 1 < q < 2(n+1)
n−1 and q ≥ 2α. Therefore, in this case

the operator
K0 = KI : W 1

2 (DT ) → L2(DT )

is continuous and compact. Then from u ∈ W 1
2 (DT ) it follows that f(u) ∈ L2(DT ) and, if um → u

in the space W 1
2 (DT ), then f(um) → f(u) in L2(DT ).

Remark 3. Let u ∈ C2,4k
0 (DT , ∂DT ) be a classical solution of problem (1)–(3). Multiplying scalarly

both parts of system (1) by an arbitrary vector function φ ∈ C2,4k
0 (DT , ∂DT ) and integrating by

parts the obtained equality on the domain DT , we have∫
DT

[∂2ku

∂t2k
∂2kφ

∂t2k
+

n∑
i,j=1

Aij
∂u

∂xi

∂φ

∂xj

]
dx dt+

∫
DT

f(u)φ dx dt =

∫
DT

Fφ dx dt (7)

∀φ ∈ C2,4k
0 (DT , ∂DT ).

We consider equality (7) as a basis for defining a weak generalized solution of problem (1)–(3).

Definition 1. Let the vector function f satisfy conditions (5), (6) and F ∈ L2(DT ). A vector
function u ∈ W 1,2k

0 (DT ) is called a weak generalized solution of problem (1)–(3) if the integral
equality (7) is valid for any vector function φ ∈ W 1,2k

0 (DT ), i.e.,∫
DT

[∂2ku

∂t2k
· ∂

2kφ

∂t2k
+

n∑
i,j=1

Aij
∂u

∂xi

∂φ

∂xj

]
dx dt+

∫
DT

f(u)φ dx dt =

∫
DT

Fφ dx dt (8)

∀φ ∈ W 1,2k
0 (DT ).

Note that due to Remark 2, the integral
∫
DT

f(u)φ dx dt in equality (8) is defined correctly, since

from u ∈ W 1,2k
0 (DT ) it follows f(u) ∈ L2(DT ) and, therefore, f(u)φ ∈ L1(DT ).

It is easy to verify that if the solution u of problem (1)–(3) belongs to the class C2,4k
0 (DT , ∂DT )

in the sense of Definition 1, then it will also be a classical solution of this problem.
Below we assume that the operator

n∑
i,j=1

Aij
∂2

∂xi∂xj
(9)

is strictly elliptic, i.e., the matrix Q(ξ) =
n∑

i,j=1
Aijξiξj is positively defined for each ξ = (ξ1, . . . , ξn) ∈

Rn \ {(0, . . . , 0)}:
(Q(ξ)η, η)RN > 0 ∀ η ∈ RN \ {(0, . . . , 0)}, (10)
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where ( · , · )RN is a standard scalar product in the euclidian space RN . Note that in the scalar case
the operator from (9) represents an elliptic operator and in this case the linear part of the operator
Lf from (1), i.e. L0 is semielliptic.

At fulfilment of condition (10) in the space C2,4k
0 (DT , ∂DT ), together with the scalar product

(u, v)o =

∫
DT

[
uv +

2k∑
i=1

∂iu

∂ti
∂iv

∂ti
+

n∑
i=1

∂u

∂xi

∂v

∂xi

]
dx dt (11)

with norm || · ||0 = || · ||
W 1,2k

0 (DT )
, defined by the right-hand side of equality (4), let us introduce

the following scalar product

(u, v)1 =

∫
DT

[
∂2ku

∂t2k
∂2kv

∂t2k
+

n∑
i,j=1

Aij
∂u

∂xi

∂v

∂xj

]
dx dt (12)

with norm

∥u∥21 =
∫
DT

[ ∣∣∣∂2ku

∂t2k

∣∣∣2 + n∑
i,j=1

Aij
∂u

∂xi

∂u

∂xj

]
dx dt, (13)

where u, v ∈ C2,4k
0 (DT , ∂DT ).

It is proved the validity of the following inequalities

c1∥u∥0 ≤ ||u||1 ≤ c2∥u∥0 ∀u ∈ C2,4k
0 (DT , ∂DT )

with positive constants c1 and c2, not dependent on u. Hence it follows that if we complete the
space C2,4k

0 (DT , ∂DT ) under norm (13), then in view of (11) we obtain the same Hilbert space
W 1,2k

0 (DT ) with equivalent scalar products (11) and (12). Further, it can be proved the unique
solvability of the linear problem correspondent to (1)–(3), i.e., when f = 0: for any F ∈ L2(DT )

there exists the unique solution u = L−1
0 F ∈ W 1,2k

0 (DT ) of this problem, where the linear operator

L−1
0 : L2(DT ) → W 1,2k

0 (DT )

is continuous. Thus, the nonlinear problem (1)–(3) is reduced to the following functional equation

u = L−1
0

[
−f(u) + F

]
(14)

in the Hilbert space W 1,2k
0 (DT ).

At fulfillment of the condition
lim

|u|→∞
inf

uf(u)

|u|2
≥ 0 (15)

it can be proved the a priori estimate of the solution u ∈ W 1,2k
0 (DT ) of equation (14), whence due

to Remark 2 we have the solvability of this equation, and, therefore, of problem (1)–(3) in the space
W 1,2k

0 (DT ). Therefore the following theorem is valid.

Theorem 1. Let conditions (5), (6), (10) and (15) be fulfilled. Then for any F ∈ L2(DT ) problem
(1)–(3) has at least one generalized solution u in the space W 1,2k

0 (DT ).

Remark 4. If conditions (5), (6) and (10) are fulfilled and the mapping f(u) : RN → RN satisfies
the condition

(f(u)− f(v))(u− v) ≥ 0 ∀u, v ∈ RN , (16)
then the solution of this problem is unique.
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Thus, the following theorem is valid.

Theorem 2. Let conditions (5), (6), (10) and (15), (16) be fulfilled. Then for any F ∈ L2(DT )

problem (1)–(3) has a unique weak generalized solution u in the space W 1,2k
0 (DT ).

As the examples show, if the conditions imposed on the nonlinear vector function f are violated,
then problem (1)–(3) may not have a solution. Indeed, consider the particular case of system (1),
when it is split in the main part, i.e., Aij = aijIN , where IN is a unit matrix of order N , and aij

are numbers such that the operator
n∑

i,j=1
aij∂

2/∂xi∂xj is a scalar elliptic operator.

Consider the following requirement imposed on the vector function f : there exist numbers

l1, . . . , lN ,
N∑
i=1

|li| ̸= 0 such that

N∑
i=1

lifi(u) ≤ −d0

∣∣∣ N∑
i=1

liui

∣∣∣β ∀u ∈ RN , 1 < β = const <
n+ 1

n− 1
, (17)

where d0 = const > 0. Let the domain Ω be given by the equation ∂Ω : ω(x) = 0, where
∇xω|∂Ω ̸= 0, ω|Ω > 0, ∇x = ( ∂

∂x1
, . . . , ∂

∂xn
) and ω ∈ C2(Rn).

Theorem 3. Let the vector function f satisfy conditions (5), (6), (10) and (17). Let F 0 =

(F 0
1 , . . . , F

0
N ) ∈ L2(DT ), G =

N∑
i=1

liF
0
i ≥ 0 and ||G||L2(DT ) ̸= 0. Then there exists a number

µ0 = µ0(G, β) > 0 such that for µ > µ0 problem (1)–(3) cannot have a weak generalized solution in
the space W 1,2k

0 (DT ) for F = µF0.

Remark 5. Consider one class of vector functions f :

fi(u1, . . . , uN ) =

N∑
j=1

aij |uj |βij + bi, i = 1, . . . , N,

where constants aij , βij and bi satisfy the inequalities

aij > 0, 1 < βij <
n+ 1

n− 1
,

N∑
k=1

bk > 0, , i, j = 1, . . . , N.

It is easy to verify that this class satisfies condition (17).
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In the present report, the initial value problem

u(n) = f(t, u, . . . , u(n−1)), (1)
u(i−1)(a) = 0 (i = 1, . . . , n) (2)

is considered, where n is an arbitrary natural number, −∞ < a < b < +∞, while f : [a, b]×Rn → R
is a continuous function. We are interested in the case where the function f with respect to the phase
variables does not satisfy the Lipshitz condition in the neighborhood of the point (0, . . . , 0) ∈ Rn.
In this case, as far as we know, the questions on the unique and multivalued solvability of problem
(1), (2) remain actually open. The structure of a set of solutions of that problem is insufficiently
studied as well (see, e.g., [1–5] and the references therein). The results given below fill to some
extent this gap. Those cover the case where the function f admits one of the following four
representations:

f(t, x1, . . . , xn) = f0(t, x1, . . . , xn) +
n∑

i=1

gi(t)|xi|λi , (3)

f(t, x1, . . . , xn) = f0(t, x1, . . . , xn) +
n∑

i=1

gi(t)ω(|xi|), (4)

f(t, x1, . . . , xn) = f0(t, x1, . . . , xn) +
n∑

i=1

gi(t)|xi|λi + g(t), (5)

f(t, x1, . . . , xn) = f0(t, x1, . . . , xn) +
n∑

i=1

gi(t)ω(|xi|) + g(t). (6)

Here λi ∈ ]0, 1[ (i = 1, . . . , n),

ω(x) =


1

ln(1 + 1/x)
for x > 0,

0 for x = 0,

while f0 : [a, b]×Rn → R+, gi : [a, b] → R+ (i = 1, . . . , n), g : [a, b] → R+ are continuous functions.
It is also assumed that the function f0 on the set [a, b] × Rn satisfies one of the following two
conditions:

f0(t, 0, . . . , 0) = 0, f0(t, x1, . . . , xn) ≤ r
(
1 +

n∑
i=1

|xi|
)
, (7)

f0(t, 0, . . . , 0) = 0,
∣∣f0(t, x1, . . . , xn)− f(t, y1, . . . , yn)

∣∣ ≤ r

n∑
i=1

|xi − yi|, (8)



122 I. Kiguradze

where r is a positive constant.
We use the following notation.
R+ = [0,+∞[ ;

Dn(]a, b[ ; g) =

{
(t, x1, . . . , xn) ∈ ]a, b[×Rn : xi ≥

1

(n− i)!

t∫
a

(t− s)n−ig(s) ds (i = 1, . . . , n)

}
;

Sf ([a, b]; t0), where t0 ∈ [a, b[, is the set of solutions of problem (1), (2) defined on the interval
[a, b] and satisfying the conditions

u(i−1)(t) = 0 for a ≤ t ≤ t0, u(i−1)(t) > 0 for t0 < t ≤ b (i = 1, . . . , n);

Sf ([a, b]) is the set of all nontrivial solutions of problem (1), (2) on the interval [a, b].

Theorem 1. Let
f(t, 0, . . . , 0) = 0 for a ≤ t ≤ b,

and let on the set [a, b]× Rn one of the following two conditions
n∑

i=1

gi(t)|xi|λi ≤ f(t, x1, . . . , xn) ≤ r
(
1 +

n∑
i=1

|xi|
)
,

n∑
i=1

gi(t)ω(|xi|) ≤ f(t, x1, . . . , xn) ≤ r
(
1 +

n∑
i=1

|xi|
)

be satisfied, where λi ∈ ]0, 1[ (i = 1, . . . , n) and r > 0 are constants, and gi : [a, b] → R+ (i =
1, . . . , n) are continuous functions such that

n∑
i=1

gi(t) > 0 for a < t < b. (9)

Then
Sf ([a, b]; t0) ̸= ∅ for a ≤ t0 < b, Sf ([a, b]) =

⋃
a≤t0<b

Sf ([a, b]; t0). (10)

Corollary 1. If the function f admits representation (3) or (4), then for condition (10) to be
satisfied it is sufficient that inequalities (7) and (9) hold.

Theorem 2. Let there exist continuous functions g : [a, b] → R+ and hi : ]a, b[→ R+ (i = 1, . . . , n)
such that the function f on the set [a, b]× Rn admits the estimate

f(t, x1, . . . , xn) ≥ g(t),

while on the set Dn(]a, b[ ; g) satisfies the Lipschitz condition

∣∣f(t, x1, . . . , xn)− f(t, y1, . . . , yn)
∣∣ ≤ n∑

i=1

hi(t)|xi − yi|.

If, moreover,
b∫

a

(t− a)n−ihi(t) dt < +∞ (i = 1, . . . , n),

then problem (1), (2) has a unique solution.
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Corollary 2. Let the function f admit representation (5) and let there exist a nonnegative constant
α such that along with (8) the conditions

lim inf
t→a

g(t)

(t− a)α
> 0, (11)

b∫
a

(t− a)(n−i+1)λi−(1−λi)α−1gi(t) dt < +∞ (i = 1, . . . , n) (12)

are satisfied. Then problem (1), (2) is uniquely solvable and its solution satisfies the inequalities

u(i−1)(t) > 0 for a < t ≤ b (i = 1, . . . , n). (13)

Remark 1. In view of the continuity of the functions gi : [a, b] → R+ (i = 1, . . . , n), for condition
(12) to be satisfied it is sufficient that the constant α satisfy the inequality

α < min
{(n− i+ 1)λi

1− λi
: i = 1, . . . , n

}
. (14)

Corollary 3. Let the function f admit representation (6) and let there exist a nonnegative constant
α such that along with (8) and (11), the conditions

b∫
a

(t− a)−αgi(t)dt < +∞ (i = 1, . . . , n) (15)

are satisfied. Then problem (1), (2) is uniquely solvable and its solution satisfies inequalities (13).

As an example, consider the differential equations

u(n) =
n∑

i=1

gi(t)|u(i−1)|λi , (16)

u(n) =
n∑

i=1

gi(t)|u(i−1)|λi + g(t), (17)

u(n) =

n∑
i=1

gi(t)ω(|u(i−1)|), (18)

u(n) =

n∑
i=1

gi(t)ω(|u(i−1)|) + g(t), (19)

where λi ∈ ]0, 1[ (i = 1, . . . , n), while gi : [a, b] → R+ (i = 1, . . . , n), g : [a, b] → R+ are continuous
functions.

From Corollaries 1 and 2 it follows

Corollary 4. Let conditions (9) and (11) hold, where α is a nonnegative constant satisfying
inequality (14). Then problem (16), (2) has a continuum of solutions, while problem (17), (2) has a
unique solution.

From Corollaries 1 and 3 follows

Corollary 5. Let conditions (9), (11) and (15) hold, where α is a nonnegative constant. Then
problem (18), (2) has a continuum of solutions, while problem (19), (2) is uniquelly solvable.

Therefore, a multivalued solvable initial value problem can be made uniquely solvable by using
an arbitrarily small perturbation of the equation under consideration.
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In the orthogonally convex cylinder E = {(x1, x2, x3) ∈ Ω : (x1, x2) ∈ D, x3 ∈ (0, ω3)}, where

D =
{
(x1, x2) ∈ Ω : x1 ∈ (0, ω1), x2 ∈ (γ1(x1), γ2(x1))

}
=

{
(x1, x2) ∈ Ω : x2 ∈ (0, ω2), x1 ∈ (η1(x2), η2(x2))

}
,

consider the boundary value problem

u(2) = f
(
x, D̃2[u]

)
, (1)

u ν1

∣∣∣
∂E

= ν1(x)ψ1(x), u(2,0,0) ν2

∣∣∣
∂E

= ν2(x)ψ2(x), u(2,2,0) ν3

∣∣∣
∂E

= ν3(x)ψ3(x). (2)

Here x = (x1, x2, x3), ∂E is the boundary of E, and ν(x) = (ν1(x), ν2(x), ν3(x)) is the outward
unit normal vector at point x ∈ ∂E, 2 = (2, 2, 2), α = (α1, α2, α3) is a multi-index,

D2[u] = (u(α))α≤2, D̃2[u] = (u(α))α<2, u(α)(x) =
∂α1+α2+α3u(x)

∂xα1
1 ∂xα2

2 ∂xα3
3

,

f(x, z) is a continuous function on E×R23, z = (z000, z100, z010, z001, . . . , z221, z212, z122), ψi ∈ C(E)
(i = 1, 2, 3) and E is the closure of E.

By a solution of problem (1),(2) we understand a classical solution, i.e., a function u ∈ C2,2,2(E)
having continuous on E partial derivatives u(2,0,0) and u(2,2,0), and satisfying equation (1) and the
boundary conditions (2) everywhere in E and ∂E, respectively.

Throughout the paper the following notations will be used:
0 = (0, 0, 0), 1 = (1, 1, 1), αi = (0, . . . , αi, . . . , 0), αij = αi +αj .
α = (α1, α2, α3) < β = (β1, β2, β3) ⇐⇒ αi ≤ βi (i = 1, 2, 3) and α ̸= β.
α = (α1, α2, α3) ≤ β = (β1, β2, β3) ⇐⇒ α < β, or α = β.
∥α∥ = |α1|+ |α2|+ |α3|.
Ξ =

{
σ
∣∣ 0 < σ < 1

}
.

Υ2 =
{
α < 2 : αi = 2 for some i ∈ {1, 2, 3}

}
.

The variables zα (α ∈ Υ2) are called principal phase variables of the function f(x, z).
z =

(
zα

)
α<2

;fα(x, z) = ∂f(x,z)
∂zα

.
suppα = {i : αi > 0}.
xα = (χ(α1)x1, χ(α2)x2, χ(α3)x3), where χ(α) = 0 if α = 0, and χ(α) = 1 if α > 0.
x̂α = x− xα.
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xα will be identified with (xi1 , . . . , xil), where {i1, . . . , il} = suppα. Furthermore, xα will be
identified with (xα, 0̂α), and x will be identified with (xα, x̂α), or with (xα,xα̂).

Ωσ = [0, ωi1 ]× · · · × [0, ωil ], where {i1, . . . , il} = suppσ.
Ωij = (0, ωi)× (0, ωj) (1 ≤ i < j ≤ 3).
Cm(E) is the Banach space of functions u : E → R, having continuous partial derivatives u(α)

(α ≤ m), endowed with the norm

∥u∥Cm(E) =
∑
α≤m

∥u(α)∥C(E).

C̃m(E) is the Banach space of functions u : E → R, having continuous partial derivatives u(α)

(α <m), endowed with the norm

∥u∥Cm(E) =
∑
α<m

∥u(α)∥C(E).

If u0 ∈ Cm(E) and r > 0, then Bm(u0; r) =
{
u ∈ Cm(E) : ∥u− u0∥Cm ≤ r

}
.

If u0 ∈ C̃m(E) and r > 0, then B̃m(u0; r) =
{
u ∈ C̃m(E) : ∥u− u0∥C̃m ≤ r

}
.

The boundary conditions (2) can be written int the following way

u(ηk(x2), x2, x3) = φ1k(x2, x3), u(2,0,0)(x1, γk(x1), x3) = φ2k(x1, x3),

u(2,2,0)(x1, x2, (k − 1)ω3) = φ3k(x1, x2) (k = 1, 2), (3)

where

φ1k(x2, x3) = ψ1(ηk(x2), x2, x3), φ2k(x1, x3) = ψ2(x1, γk(x1), x3),

φ3k(x1, x2) = ψ3(x1, x2, (k − 1)ω3) (k = 1, 2). (4)

Along with problem (1), (3) consider the linear homogeneous problem

u(2) =
∑
α<2

pα(x)u
(α), (10)

u(ηk(x2), x2, x3) = 0, u(2,0,0)(x1, γk(x1), x3) = 0, u(2,2,0)(x1, x2, (k − 1)ω3) = 0 (k = 1, 2). (30)

For each σ ∈ Ξ in the domain Ωσ consider the homogeneous boundary value problem depending
on the parameter xσ̂ ∈ Ωσ̂:

v(2,0,0) = p022(x1, x̂1)v + p122(x1, x̂1)v
(1,0,0), (1100)

v(η1(x2), x̂1) = 0, v(η2(x2), x̂1) = 0; (2100)
v(0,2,0) = p202(x2, x̂2)v + p212(x2, x̂2)v

(0,1,0), (1010)
v(γ1(x1), x̂2) = 0, v(γ2(x1), x̂2) = 0; (3010)

v(0,0,2) = p220(x3, x̂3)v + p221(x3, x̂3)v
(0,0,1), (1001)

v(0, x̂3) = 0, v(ω3, x̂3) = 0; (3001)

v(212) =
∑

α<212

pα+2̂12
(x12, x̂12)v

(α), (1110)

v(ηk(x2), x̂12) = 0, v(2,0,0)(γk(x1), x̂12) = 0 (k = 1, 2); (3110)
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v(213) =
∑

α<213

pα+2̂13
(x13, x̂13)v

(α), (1101)

v(ηk(x2), x̂13) = 0, v(2,0,0)((k − 1)ω3, x̂13) = 0 (k = 1, 2); (3101)

v(223) =
∑

α<223

pα+2̂23
(x23, x̂23)v

(α), (1011)

v(γk(x1), x̂23) = 0, v(2,0,0)((k − 1)ω3, x̂23) = 0 (k = 1, 2). (3011)

Definition 1. Problem (1σ), (3σ) (σ ∈ Ξ) is called σ-associated problem of problem (10), (30).

Along with problem (1), (2) consider the perturbed problem

u(2) = f
(
x, D̃2[u]

)
+ f̃

(
x, D̃2[u]

)
, (5)

u(ηk(x2), x2, x3) = φ1k(x2, x3) + φ̃1k(x2, x3),

u(2,0,0)(x1, γk(x1), x3) = φ2k(x1, x3) + φ̃2k(x1, x3),

u(2,2,0)(x1, x2, (k − 1)ω3) = φ3k(x1, x2) + φ̃3k(x1, x2) (k = 1, 2), (6)

where

φ̃1k(x2, x3) = ψ̃1(ηk(x2), x2, x3), φ̃2k(x1, x3) = ψ̃2(x1, γk(x1), x3),

φ̃3k(x1, x2) = ψ̃3(x1, x2, (k − 1)ω3) (k = 1, 2). (7)

A vector function (f̃ ; ψ̃1, ψ̃2, ψ̃3) is said to be an admissible perturbation if f̃ ∈ C(Ω × R23) is
locally Lipschitz continuous with respect to the principal phase variables, ψ̃1 ∈ C2,2,2(E), ψ̃2 ∈
C0,2,2(E) and ψ̃2 ∈ C0,0,2(E).

Definition 2. Let u0 be a solution of problem (1), (2), and r > 0. We say that problem (1), (2) is
(u0, r)-well-posed, if:

(I) u0(x) is the unique solution of problem (1), (2) in the ball B̃2(u0; r);

(II) there exist positive constant δ0 and an increasing continuous ε : [0, δ0] → [0,+∞) such that
ε(0) = 0 and for any δ ∈ (0, δ0] and an arbitrary admissible perturbation (f̃ ; ψ̃1, ψ̃2, ψ̃3)
satisfying the conditions

|f̃α(x, z)| ≤ δ0 for (x, z) ∈ Ω× R23 (α ∈ Υm), (8)
|f̃(x, z)| ≤ δ for (x, z) ∈ Ω× R23, (9)

∥ψ̃1∥C2,2,2(E) + ∥ψ̃2∥C0,2,2(E) + ∥ψ̃3∥C0,0,2(E) ≤ δ, (10)

problem (4), (5) has at least one solution in the ball B̃2(u0; r), and each such solution belongs
to the ball B̃2(u0; ε(δ)).

Definition 3. Let u0 be a solution of problem (1), (2), and r > 0. We say that problem (1), (2) is
strongly (u0, r)-well-posed, if:

(I) u0(x) is the unique solution of problem (1), (2) in the ball B̃2(u0, r);

(II) there exist a positive constants δ0 and M such that for any δ ∈ (0, δ0] and an arbitrary
admissible perturbation (f̃ ; ψ̃1, ψ̃2, ψ̃3) satisfying conditions (7)–(9), problem (4), (5) has at
least one solution in the ball B̃2(u0; r), and each such solution belongs to the ball B̃2(u0;Mδ).
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Definition 4. Problem (1), (2) is called well-posed (strongly well-posed), if it is (u0, r)-well-posed
(strongly (u0, r)-well-posed) for every r > 0.

Definition 5. A solution u0 of problem (1), (2) is called strongly isolated, if problem (1), (2) is
strongly (u0, r)-well-posed for some r > 0.

Theorem 1. Let
ηk ∈ C2([0, ω2]) (k = 1, 2), (11)

let the function f(x, z) be continuously differentiable with respect to the phase variables, and let
there exist functions Piα(x) ∈ C(E) (α < 2; i = 1, 2) such that:

(E1)
P1α(x) ≤ fα(x, z) ≤ P2α(x) for (x,Z) ∈ E × R23 (α < 2); (12)

(E2) For every σ ∈ Ξ∪{1},1 x̂σ ∈ Eσ̂ and arbitrary measurable functions pα ∈ L∞(Eσ) (α < 2σ)
satisfying the inequalities

P1α+2̂σ
(y, x̂σ) ≤ pα(y) ≤ P2α+2̂σ

(y, x̂σ) for y ∈ Eσ (α < 2σ), (13)

the σ-associated problem (1σ), (3σ) has only the trivial solution in AC1(Eσ);

(E3) the problem

u(2) =
∑
α<2

P1α(x)u
(α),

u(ηk(x2), x2, x3) = 0, u(2,0,0)(x1, γk(x1), x3) = 0, u(2,2,0)(x1, x2, (k − 1)ω3) = 0 (k = 1, 2),

is well-posed. Then problem (1), (3) is strongly well-posed, and its solution belongs to
C2,2,2(E).

Theorem 2. Let condition (11) hold, the function f(x, z) be continuously differentiable with respect
to the phase variables, and let u0 be a solution of problem (1), (3). Then problem (1), (3) is strongly
(u0, r)-well-posed for some r > 0 if and only if the linear homogeneous problem (10), (30) is well-
posed, where

pα(x) = fα(x, D̃2[u0(x)]) (α < 2).

Consider the equations

u(2) = f(x, D̃2[u]) + q(x,D1[u]), (14)

u(2) =
(
p1(x)u

(1,0,0)
)(1,0,0)

+
(
p2(x)u

(0,1,0)
)(0,1,0)

+
(
p3(x)u

(0,0,1)
)(0,0,1)

+ p0(x, u), (15)

u(2) =
∑
α<2

ρα
(
x,D1[u]

)
u(α) + q

(
x,D1[u]

)
, (16)

u(2) =
(
p1(x, u)u

(1,0,0)
)(1,0,0)

+
(
p2(x, u)u

(0,1,0)
)(0,1,0)

+
(
p3(x, u)u

(0,0,1)
)(0,0,1)

+ p0(x, u) + q
(
x,D1[u]

)
. (17)

Theorem 3. Let the function f satisfy all of the conditions of Theorem 1, and let q ∈ C(Ω× R8)
be such that

lim
∥z∥→+∞

|q(x, z)|
∥z∥

= 0 uniformly on E. (18)

Then problem (14), (3) is solvable and its every solution belongs to C2,2,2(E).
1If σ = 1, then by (1σ), (3σ) we understand the homogeneous problem (10), (30).
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Corollary. Let condition (11) hold,

(−1)k−1η′′k(x2) ≥ 0 for x2 ∈ (0, ω2) (k = 1, 2), (19)

and let p1 ∈ C1,0,0(E), p2 ∈ C0,1,0(E), p3 ∈ C0,0,1(E), p0 ∈ C(E × R) satisfy the inequalities

p1(x) ≤ 0, p2(x) ≤ 0, p3(x) ≤ 0 for x ∈ E, (20)(
p0(x, z1)− p0(x, z2)

)
(z1 − z2) ≥ 0 for (x1, x2, z) ∈ E × R. (21)

Then problem (15), (3) is strongly well-posed and its solution belongs to C2,2,2(E).

Theorem 4. Let conditions (11) and (18) hold, and let there exist functions Piα(x) ∈ C(E) (α < 2;
i = 1, 2) satisfying conditions (E2) and (E2) of Theorem 1 such that:

P1α(x) ≤ ρα(x, z) ≤ P2α(x) for (x, z) ∈ E × R8 (α < 2). (22)

Then problem (16), (3) is solvable and its every solution belongs to C2,2,2(E).

Theorem 5. Let conditions (11), (18) and (19) hold, and let pk ∈ C1(E × R) (k = 1, 2, 3) satisfy
the inequalities

pk(x, z) ≤ 0 for (x, z) ∈ E × R (k = 1, 2, 3),

p0(x, z)z ≥ 0 for (x, z) ∈ Ω× R.

Then problem (17), (30) is solvable and its every solution belongs to C2,2,2(E).
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In the rectangle Ω = [0, ω1]× [0, ω2] consider the problem

uxy = P0(x, y)u+ P1(x, y)ux + P2(x, y)uy + q(x, y), (1)
u(0, y) = Au(ω1, y) + φ(y), u(x, 0) = Bu(x, ω2) + ψ(x), (2)

where Pj ∈ C(Ω;Rn×n) (j = 0, 1, 2), q ∈ C(Ω;Rn), A,B ∈ Rn×n, φ ∈ C1([0, ω2];Rn) and ψ ∈
C1([0, ω1];Rn).

Problem (1), (2) is not well-posed, since for its solvability the vector functions φ and ψ should
satisfy some compatibility condition. For example, if

AB = BA, (3)

then for solvability of problem (1), (2) it is necessary that

φ(0)−Bφ(ω2) = ψ(0)−Aψ(ω1). (4)

Indeed, for an arbitrary u ∈ C(Ω;Rn), in view of equality (3), we have

h ◦ ℓ(u) = ℓ ◦ h(u), (5)

where
ℓ(z) = z(0)−Az(ω1), h(z) = z(0)−Bz(ω2).

Consequently, if u(x, y) satisfies condition (2), then equality (5) implies

ψ(0)−Aψ(ω1) = ℓ ◦ h(u) = h ◦ ℓ(u) = φ(0)−Bφ(ω2).

Notice that, if u ∈ C1,1(Ω;Rn) satisfies condition (2), then

h(ux(x, · )) = ψ′(x).

Therefore,
u(0, y) = Au(ω1, y) + φ(y), ux(x, 0) = Bux(x, ω2) + ψ′(x). (6)

Along with system (1) and conditions (2) and (6) consider their corresponding homogeneous
system and conditions

uxy = P0(x, y)u+ P1(x, y)ux + P2(x, y)uy, (10)
u(0, y) = Au(ω1, y), u(x, 0) = Bu(x, ω2) (20)

and
u(0, y) = Au(ω1, y), ux(x, 0) = Bux(x, ω2). (60)
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Let Y (y;x) be the fundamental matrix of the differential system

dz

dy
= P1(x, y)z,

satisfying the initial condition
Y (0;x) = I,

where I is n × n identity matrix. By X(x; y) denote the fundamental matrix of the differential
system

dz

dx
= P2(x, y)z,

satisfying the initial condition
X(0; y) = I.

If problem
dz

dx
= P2(x, y)z, z(0)−Az(ω1) = 0,

has only the trivial solution, then by G1(x, s; y) denote its Green’s matrix, and if problem

dz

dy
= P1(x, y)z, z(0)−Bz(ω2) = 0

has only the trivial solution, then by G2(y, t;x) denote its Green’s matrix.

Theorem 1. Let the problem

z′ = 0, z(0) = Az(ω1) (7)

have only the trivial solution, and let the following inequalities hold:

det
(
I − Y (ω2;x)B

)
̸= 0 for x ∈ [0, ω1], (8)

det
(
I −X(ω1; y)A

)
̸= 0 for y ∈ [0, ω2]. (9)

Then problem (1), (6) has the Fredholm property. Furthermore, if problem (10), (60) has only the
trivial solution, then problem (1), (6) has a unique solution u u admitting the estimate

∥u∥C1,1(Ω) ≤M
(
∥q∥C(Ω) + ∥φ∥C1([0,ω2]) + ∥ψ∥C1([0,ω1])

)
, (10)

where M is a positive number independent of φ, ψ and q.

Definition. Problem (1), (6) is called well-posed if for every φ ∈ C1([0, ω2];Rn), ψ ∈ C1([0, ω1];Rn)
and q ∈ C(Ω;Rn) it has a unique solution u admitting estimate (10), where M is a positive number
independent of φ, ψ and q.

Theorem 2. If problem (1), (6) is well-posed, then problem (7), (8) has only the trivial solution
and inequalities (9) and (10) hold.

Theorem 3. Let inequalities (9) and (10) hold, and let the matrices A ∈ Rn×n and B ∈ Rn×n

satisfy condition (3). Then:

(i) the space of solutions of problem (10), (20) is finite dimensional;

(ii) if the homogeneous problem (10), (20) has only the trivial solution, then problem (1), (2) is
uniquely solvable if and only if the compatibility condition (4) holds.
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Corollary 1. Let P1(x, y) ≡ P1(x), P2(x, y) ≡ P2(y), let the problem (7) have only the trivial
solution, and let

det
(
I − exp(ω2P1(x))B

)
̸= 0 for x ∈ [0, ω1], (11)

det
(
I − exp(ω1P2(y))A

)
̸= 0 for y ∈ [0, ω2]. (12)

Then problem (1), (6) has the Fredholm property.

Corollary 2. Let problem (7) have only the trivial solution, and let there exist σi ∈ {−1, 1}
(i = 1, 2) such that

σ1(A
TA− I) is positive semi-definite,

σ1P1(x, y) is positive definite for (x, y) ∈ Ω

and

σ2
(
BTB − I

)
is positive semi-definite,

σ2P2(x, y) is positive definite for (x, y) ∈ Ω.

Then problem (1) (6) has the Fredholm property.

Theorem 4. Let conditions (8) and (9) hold, let problem (7) have only the trivial solution, let
Γ ∈ Rn×n

+ be a nonnegative matrix with the spectral radius less than 1, and let either

P1 ∈ C1,0(Ω;Rn×n), P1(0, y) = P1(ω1, y), P1(ω1, y)A = AP1(ω1, y), (13)

and
ω2∫
0

ω1∫
0

∣∣∣G2(y, t;x)G1(x, s; t)
(
P0(s, t) + P2(s, t)P1(s, t)−

∂

∂s
P1(s, t)

)∣∣∣ ds dt ≤ Γ, (14)

or
P2 ∈ C0,1(Ω;Rn×n), P2(x, 0) = P2(x, ω2), P2(x, ω2)B = B P2(x, ω2), (15)

and
ω1∫
0

ω2∫
0

∣∣∣G1(x, s; y)G2(y, t; s)
(
P0(s, t) + P1(s, t)P2(s, t)−

∂

∂t
P2(s, t)

)∣∣∣ dt ds ≤ Γ. (16)

Then problem (1) (6) is uniquely solvable.

Consider the system
uxy = P0(x, y)u+ ux + uy + q(x, y). (17)

Theorem 5. Let problem (7) have only the trivial solution,

P0(x, y) = P T
0 (x, y) for x, y) ∈ Ω,

ATA− I be positive semi-definite,
BTB − I be positive semi-definite,

I −ATA−BTB +BTATAB be positive semi-definite,

and let one of the following three conditions hold:
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(i) P0 ∈ C1,0(Ω;Rn×n) and

P0(ω1, y)−ATP0(0, y)A is positive semi-definite for y ∈ [0, ω2],

P0(x, y) +
1

2

∂P0(x, y)

∂x
is negative semi-definite for (x, y) ∈ Ω,

ω1∫
0

P0(s, y) ds is negative definite for y ∈ [0, ω2];

(ii) P0 ∈ C0,1(Ω;Rn×n) and

P0(x, ω2)−BTP0(x, ω2)B is positive semi-definite for x ∈ [0, ω1],

P0(x, y) +
1

2

∂P0(x, y)

∂y
is negative semi-definite for (x, y) ∈ Ω,

ω2∫
0

P0(x, t) dt is negative definite for x ∈ [0, ω1];

(iii) P0 ∈ C1(Ω;Rn×n) and

P0(ω1, y)−ATP0(0, y)A is positive semi-definite for y ∈ [0, ω2],

P0(x, ω2)−BTP0(x, ω2)B is positive semi-definite for x ∈ [0, ω1],

P0(x, y) +
1

4

(∂P0(x, y)

∂x
+
∂P0(x, y)

∂y

)
is negative semi-definite for (x, y) ∈ Ω,

ω1∫
0

ω2∫
0

P0(s, t) dt ds is negative definite.

Then problem (17), (6) is uniquely solvable.

Consider the case, where Pi(x, y) ≡ Pi (i = 0, 1, 2) and A = I, i.e. consider the problem

uxy = P0u+ P1ux + P2uy + q(x, y), (18)
u(0, y) = u(ω1, y) + φ(y), u(x, 0) = Bu(x, ω2) + ψ(x). (19)

Theorem 6. Let

det
(
I − exp(ω2P1)B

)
̸= 0,

det
(
I − exp(ω1P2)

)
̸= 0,

and let the compatibility condition

φ(0)−Bφ(ω2) = ψ(0)− ψ(ω1)

hold. Then problem (18), (19) is uniquely solvable if and only if

det
(
I − exp(ω1Λk)B

)
̸= 0 for k ∈ Z,

where
Λk =

(
i
2π

ω1
kI − P2

)(
P0 + i

2π

ω1
kP1

)
.
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Consider the case n = 1. For the equation

uxy = p0(y)u+ p1(y)ux + p2(y)uy + q(x, y) (20)

consider the boundary conditions

u(0, y) = u(ω1, y), u(x, 0) = bu(x, ω2). (21)

Theorem 7. Let the following inequalities hold:

p0(y) p1(y) p2(y) < 0 for y ∈ [0, ω] (22)

and

(1− b) p1(y) ≥ 0 for y ∈ [0, ω].

Then problem (20), (21) is uniquely solvable. In particular, if b = 1, then the doubly periodic
problem (20), (21) is uniquely solvable if inequality (22) holds.
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Our goal in the proposed study is to apply Neural Network (NN) capabilities to the approximate
solution of the partial differential equations (PDEs). Neural networks are one of the popular
approach to approximate multi-variable nonlinear functions. It has been also successfully applied
to different kinds of real-world problems arising in finance, healthcare, signature verification and
facial recognition, weather forecasting, etc. In this note, we consider the simple heat equation and
propose its approximate solution by using NN.

In the domain Ω = (0, 1) × (0, T ), T = const > 0, let us consider the initial-boundary value
problem for the heat equation:

∂U(x, t)

∂t
− a

∂2U(x, t)

∂x2
= f(x, t), (x, t) ∈ Ω,

U(0, t) = U(1, t) = 0, t ∈ [0, T ],

U(x, 0) = U0(x), x ∈ [0, 1],

(1)

where a is a positive constant and U0 is a given function.
Qualitative and quantitative properties, as well as the numerical solution for problem (1) and its

even more complicated nonlinear analogs, are well-studied in the literature (see, for example, [2–5,9]
and the references therein). Our purpose, as we already mentioned, is to study a different approach
to solving PDEs by means of Machine Learning methods, in particular, to train the neural network
so that the trained surrogate model could predict the solution of PDE at any arbitrary point
(x, t) ∈ Ω. Neural Networks could contain several layers. It necessarily contains input and output
layers and could have any number of inner layers called hidden layers (see, for example, Fig. 1). In
each layer, the user can choose the number of neurons (green circles).

The neural network constructs approximation for the solution of problem (1)

u(x, t, θ) ≈ U(x, t),

where u(x, t, θ) denotes the function obtained from a NN, and θ is the variable combining all NN
parameters which should be optimized during the training of the NN. In general, training of the
NN requires a large amount of training data, representing the NN’s input. However, applying the
NN to the PDEs approximate solution has the advantage due to it tacks into account the physics
and therefore shortens the size of the training data (see, for example, [1, 6–8]).

The state-of-the-art machine learning software algorithms, provide automatic differentiation
capabilities for functions realized by neural networks, the approximate solution u(x, t, θ), which in
turn allows the residual of the nonlinear problem (1) to be evaluated at a set of training points.

R(x, t, θ) =
∂u(x, t, θ)

∂t
− a

∂2u(x, t, θ)

∂x2
− f(x, t). (2)
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Figure 1. Architecture of the general Neural Network.

Figure 2. Difference between exact and numerical solutions and learning rate (1000
epochs).

Let us construct the cost function F(x, t, θ) which should be minimized by a neural network
during the training. The cost function should incorporate residual (2) as well as initial and boundary
conditions as follows:

F(x, t, θ) = Errresidual(x, t, θ) + Errinitial(x, t, θ) + Errboindary(x, t, θ),

where

Errresidual(x
r
i , t

r
i , θ) =

1

Nr

Nr∑
i=1

∣∣R(xri , t
r
i , θ)

∣∣2,
Errinitial(x

0
i , t

0
i , θ) =

1

N0

N0∑
i=1

∣∣u(x0i , t0i , θ)− U0(x
0
i )
∣∣2,

Errboindary(x
b
i , t

b
i , θ) =

1

Nb

Nr∑
i=1

∣∣u(xbi , tbi , θ)∣∣2.
The number of the training points is denoted by Nr, while (xri , t

r
i ) represents a set of training data.

Collection of the following points (x0i , t
0
i ), (xbi , t

b
i) are used for initial and boundary conditions

respectively.
Below the results of the numerical experiments are given. For the training of the neural network,

the library of scientific computing NumPy and the library of machine learning TensorFlow are used.
For the test experiments the Jupyter Notebook implementation, proposed in [1], was modified and
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applied to the problem (1). The right-hand side of the problem (1) was chosen in such a way
that the exact solution is U(x, t) = x(1 − x) exp(−x − t) with the corresponding initial solution
U0(x) = x(1− x) exp(−x).

For the initial line and the boundaries we set N0 = Nb = 25 and for the inner points, training
data of size Nr = 1000 was chosen.

For the neural network architecture, we set five hidden layers and 10 neurons in each layer.
The surfaces in Fig. 3 depict exact and numerical solutions when for NN training 1000 epochs
(iterations) were used.

Figure 3. Exact and numerical solutions (1000 epochs).

The difference between exact and numerical solutions is given in Fig. 2 (left). In the same
figure, the NN learning rate is given on right.

We also ran NN training for 5000 epochs. The results for the difference between exact and
numerical solutions and the learning rate are given in Fig. 4.

Figure 4. Difference between exact and numerical solutions and learning rate
(5000 epochs).
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1 Introduction
This contribution is based on our recent paper [1], where we establish a novel, extended, version of
the strong maximum principle for a general class of second order ordinary differential equations

v′′ = g(t, v, v′),

in the absence of any assumption of continuity or monotonicity on the function g, and where,
exploiting this tool, we provide some optimal regularity results for the bounded variation solutions,
positive and nodal, of the non-autonomous curvature equation

−
(

u′√
1 + (u′)2

)′
= f(x, u), (1.1)

f being an arbitrary function prescribing the curvature of the graph of u.
The analysis carried out in [1] allows us, through a completely different technical device, to

extend most of the results we previoulsly obtained in [2–5], for the positive bounded variation so-
lutions of (1.1) under homogeneous Neumann boundary condition and the structural assumption
f(x, s) = h(x)k(s), to more general classes of equations and to, possibly non-homogeneous, Dirich-
let, Neumann, Robin, or even periodic boundary value problems. Furthermore, we are able to
produce a new interpretation of the assumptions used in our previous works, clarifying their mean-
ing and displaying some deep, though previously hidden, connections with the strong maximum
principle.

2 A variant of the strong maximum principle
The main result of this section is the following version of the strong maximum principle for second
order ordinary differential equations with possibly discontinuous and non-monotone right-hand
sides. In this respect, the Keller–Osserman assumption (G) stated below is independent of the
conditions required by the classical Vázquez strong maximum principle in [6] and by its extensions
given by Pucci and Serrin in [7], where G′ is always supposed to be continuous and increasing.
Accordingly, this result yields, in the one-dimensional setting, a completion and a sharpening of its
counterparts in [6] or [7]; its proof, delivered in [1], being also more delicate than in the classical
situations.
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Theorem 2.1. Let g : (α, ω)×R×R → R be a given function and let v ∈ W 2,1
loc (α, ω)∩W 1,1(α, ω)

be a non-trivial non-negative solution of the differential equation

v′′(t) = g(t, v(t), v′(t)) for almost all t ∈ (α, ω).

Assume that:

(G) there exist a constant ε > 0 and an absolutely continuous function G : [0, ε] → R such that

0 ≤ g(t, v(t), v′(t)) ≤ G′(v(t)) for almost all t ∈ (α, ω)

for which 0 < v(t) ≤ ε and |v′(t)| ≤ ε,

and either
G(s) = 0 for all s ∈ (0, ε],

or

G(s) > 0 for all s ∈ (0, ε] and
ε∫

0

1√
G(s)

ds = +∞. (2.1)

Then, v is strongly positive in the sense that the following properties hold true:

• v(t) > 0 for all t ∈ (α, ω);

• v′(α+) > 0 if v(α) = 0 and v′(α+) exists;

• v′(ω−) < 0 if v(ω) = 0 and v′(ω−) exists.

3 Optimal regularity results for the prescribed curvature equation
In this section we discuss the regularity properties of the bounded variation solutions of the one-
dimensional non-autonomous prescribed curvature equation

−
(

u′√
1 + (u′)2

)′
= f(x, u), a < x < b, (3.1)

where f : (a, b)×R → R is any given function. We begin by recalling the notion of bounded variation
solution of equation (3.1). To this end, for any v ∈ BV (a, b), we denote by Dv = Dav dx+Dsv the
Lebesgue–Nikodym decomposition, with respect to the Lebesgue measure dx in R, of the Radon
measure Dv in its absolutely continuous part Dav dx, with density function Dav, and its singular
part Dsv. Further, Dsv

|Dsv| stands for the density function of Dsv with respect to its absolute variation
|Dsv|. Finally, for every x0 ∈ [a, b), v(x+0 ) denotes the right trace of v at x0 and, for every x0 ∈ (a, b],
v(x−0 ) denotes the left trace of v at x0.

Definition 3.1. A function u ∈ BV (a, b) is a bounded variation solution of (3.1) if f( · , u( · )) ∈
L1(a, b) and

b∫
a

Dau(x)Daϕ(x)√
1 + (Dau(x))2

dx+

b∫
a

Dsu

|Dsu|
(x)Dsϕ =

b∫
a

f(x, u(x))ϕ(x) dx

for all ϕ ∈ BV (a, b) such that |Dsϕ| is absolutely continuous with respect to |Dsu| and ϕ(a+) =
ϕ(b−) = 0.
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We begin with a partial regularity result: it establishes that a bounded variation solution u
of (3.1) can lose its regularity at the endpoints, but never at the interior points, of the intervals
where the function f( · , u( · )) has a definite sign; whereas, u can be singular at an interior point of
its domain if such a point separates two adjacent intervals where f( · , u( · )) changes sign. In both
cases, the derivative u′ blows up, but, in the latter one, u can further exhibit a jump discontinuity.

Theorem 3.1. Let u be a bounded variation solution of equation (3.1). Then, the following
statements hold.

(i) If f(x, u(x)) ≥ 0 for almost all x ∈ (a, b), then u is concave and either u ∈ W 2,1(a, b), or
u ∈ W 2,1

loc [a, b)∩W 1,1(a, b) and u′(b−) = −∞, or u ∈ W 2,1
loc (a, b]∩W 1,1(a, b) and u′(a+) = +∞,

or u ∈ W 2,1
loc (a, b) ∩ W 1,1(a, b), u′(a+) = +∞, and u′(b−) = −∞. In all cases, u satisfies

equation (3.1) for almost all x ∈ (a, b).

(ii) If f(x, u(x)) ≤ 0 for almost all x ∈ (a, b), then u is convex and either u ∈ W 2,1(a, b), or
u ∈ W 2,1

loc [a, b)∩W 1,1(a, b) and u′(b−) = +∞, or u ∈ W 2,1
loc (a, b]∩W 1,1(a, b) and u′(a+) = −∞,

or u ∈ W 2,1
loc (a, b) ∩ W 1,1(a, b), u′(a+) = −∞, and u′(b−) = +∞. In all cases, u satisfies

equation (3.1) for almost all x ∈ (a, b).

(iii) If there is c ∈ (a, b) such that f(x, u(x)) ≥ 0 for almost all x ∈ (a, c) and f(x, u(x)) ≤ 0
for almost all x ∈ (c, b), then u|(a,c) is concave, u|(c,b) is convex, and either u ∈ W 2,1

loc (a, b) ∩
W 1,1(a, b), or u|(a,c) ∈ W 2,1

loc (a, c) ∩W 1,1(a, c), u|(c,b) ∈ W 2,1
loc (c, b) ∩W 1,1(c, b), u(c−) ≥ u(c+),

and u′(c−) = −∞ = u′(c+). Moreover, in case u(c−) > u(c+), we have that

Dsu = (u(c+)− u(c−)) δc,

where δc stands for the Dirac measure concentrated at c. In any circumstances, u satisfies
equation (3.1) for almost all x ∈ (a, b).

(iiii) If there is c ∈ (a, b) such that f(x, u(x)) ≤ 0 for almost all x ∈ (a, c) and f(x, u(x)) ≥ 0
for almost all x ∈ (c, b), then u|(a,c) is convex, u|(c,b) is concave, and either u ∈ W 2,1

loc (a, b) ∩
W 1,1(a, b), or u|(a,c) ∈ W 2,1

loc (a, c) ∩W 1,1(a, c), u|(c,b) ∈ W 2,1
loc (c, b) ∩W 1,1(c, b), u(c−) ≤ u(c+),

and u′(c−) = +∞ = u′(c+). Moreover, in case u(c−) < u(c+), (3.1) holds. In any circum-
stances, u satisfies equation (3.1) for almost all x ∈ (a, b).

Our next two results, Theorems 3.2 and 3.3, establish the complete regularity of the bounded
variation solutions u of (3.1). Precisely, Theorem 3.2 guarantees the regularity at the endpoints of
any interval where the sign of f( · , u( · )) is constant, by imposing at these points a suitable control,
expressed by any of the conditions (j)–(jjjj), on the decay rate to zero of f( · , u( · )) Theorem 3.3,
instead, guarantees the regularity of u at any interior point, z, separating two adjacent interval
where f( · , u( · )) changes sign, by imposing a similar decay property to f( · , u( · )) either on the
left, or on the right, of z, as expressed by the conditions (h) or (hh). From [3–5] we also know
that these assumptions on the decay rate of f( · , u( · )) are optimal, in the sense that, if they fail at
some point, the derivative u′ might blow-up there, and the solution u might even develop a jump
discontinuity.

The proof of Theorems 3.2 and 3.3 presented in [1] is completely new and it relies on the use of
the strong maximum principle as expressed by Theorem 2.1. Our approach, besides being far more
general and versatile, displays the following striking fact: it turns out that the assumption yielding
the regularity of a solution u of (3.1), through a control on the decay rate to zero of f( · , u( · )) at
some point z, is precisely the Keller–Osserman condition (2.1) required by Theorem 2.1 so that the
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strong maximum principle holds for the differential equation(
v′√

1 + (v′)2

)′
= f(z + v, t) ⇐⇒ v′′ = f(z + v, t)(1 + (v′)2)

3
2 , (3.2)

satisfied by the shift v = w − z of a local inverse w of u. Note that, as f is not assumed to satisfy
any regularity condition, the right-hand side of (3.2), that is, the function

g(t, s, ξ) := f(z + s, t)(1 + ξ2)
3
2 ,

may be discontinuous, besides in t, in the state variable s as well. Note that this could happen even
if f were a Carathéodory function and thus g would be continuous in t and ξ, but just Lebesgue
measurable with respect to s. Essentially, we establish that the validity of the strong maximum
principle for equation (3.2) yields the regularity for the solutions of (3.1). As a consequence, the
bounded variation solutions of (3.1) can develop singularities only when the conclusions of the
strong maximum principle fail for (3.2). This appears to be a quite remarkable achievement that
illuminates and clarify the otherwise apparently exotic conditions we introduced in [3].

Theorem 3.2. Let u be a bounded variation solution of (3.1). Then the following assertions hold.

(j) If f(x, u(x)) ≥ 0 for almost all x ∈ (a, b) and there exist δ > 0 and µ ∈ L1(a, a+ δ) such that

• f(x, u(x)) ≤ µ(x) for almost all x ∈ (a, a+ δ),

• M(x) :=

x∫
a

µ(t) dt > 0 for all x ∈ (a, a+ δ], and
a+δ∫
a

1√
M(x)

dx = +∞,

then u ∈ W 2,1
loc [a, b) ∩W 1,1(a, b).

(jj) If f(x, u(x)) ≥ 0 for almost all x ∈ (a, b) and there exist δ > 0 and µ ∈ L1(b− δ, b) such that

• f(x, u(x)) ≤ µ(x) for almost all x ∈ (b− δ, b),

• M(x) :=

b∫
x

µ(t) dt > 0 for all x ∈ [b− δ, b), and
b∫

b−δ

1√
M(x)

dx = +∞,

then u ∈ W 2,1
loc (a, b] ∩W 1,1(a, b).

(jjj) If f(x, u(x)) ≤ 0 for almost all x ∈ (a, b) and there exist δ > 0 and ν ∈ L1(a, a+ δ) such that

• f(x, u(x)) ≥ ν(x) for almost all x ∈ (a, a+ δ),

• N(x) :=

x∫
a

ν(t) dt < 0 for all x ∈ (a, a+ δ], and
a+δ∫
a

1√
−N(x)

dx = +∞,

then u ∈ W 2,1
loc [a, b) ∩W 1,1(a, b).

(jjjj) If f(x, u(x)) ≤ 0 for almost all x ∈ (a, b) and there exist δ > 0 and ν ∈ L1(b− δ, b) such that

• f(x, u(x)) ≥ ν(x) for almost all x ∈ (b− δ, b),

• N(x) :=

b∫
x

ν(t) dt < 0 for all x ∈ [b− δ, b), and
b∫

b−δ

1√
−N(x)

dx = +∞,
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then u ∈ W 2,1
loc (a, b] ∩W 1,1(a, b).

Theorem 3.3. Let u be a bounded variation solution of equation (3.1). Then the following sta-
tements hold.

(h) If there is c ∈ (a, b) such that f(x, u(x)) ≥ 0 for almost all x ∈ (a, c) and f(x, u(x)) ≤ 0 for
almost all x ∈ (c, b) and either there exist δ > 0 and µ ∈ L1(c− δ, c) such that

• f(x, u(x)) ≤ µ(x) for almost all x ∈ (c− δ, c),

• M(x) :=

c∫
x

µ(t) dt > 0 for all x ∈ [c− δ, c), and
c∫

c−δ

1√
M(x)

dx = +∞,

or there exist δ > 0 and ν ∈ L1(c, c+ δ) such that

• f(x, u(x)) ≥ ν(x) for almost all x ∈ (c, c+ δ),

• N(x) :=

x∫
c

ν(t) dt < 0 for all x ∈ (c, c+ δ], and
c+δ∫
c

1√
−N(x)

dx = +∞,

then u ∈ W 2,1
loc (a, b) ∩W 1,1(a, b).

(hh) If there is c ∈ (a, b) such that f(x, u(x)) ≤ 0 for almost all x ∈ (a, c) and f(x, u(x)) ≥ 0 for
almost all x ∈ (c, b) and either there exist δ > 0 and ν ∈ L1(c− δ, c) such that

• f(x, u(x)) ≥ ν(x) for almost all x ∈ (c− δ, c),

• N(x) :=

c∫
x

ν(t) dt < 0 for all x ∈ [c− δ, c), and
c∫

c−δ

1√
−N(x)

dx = +∞,

or there exist δ > 0 and µ ∈ L1(c, c+ δ) such that

• f(x, u(x)) ≤ µ(x) for almost all x ∈ (c, c+ δ),

• M(x) :=

x∫
c

ν(t) dt > 0 for all x ∈ (c, c+ δ], and
c+δ∫
c

1√
M(x)

dx = +∞,

then u ∈ W 2,1
loc (a, b) ∩W 1,1(a, b).
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For any map y : R+ → Rn, where R+ = {t ∈ R : t ≥ 0}, we can calculate the Lyapunov
exponent λ[y] as

λ[y] = lim
t→+∞

1

t
ln ∥y(t)∥. (1)

It is well known that Lyapunov exponents play an important role in qualitative theory of differential
equations and stability theory, see [2] or [8]. For maps defined on some subsets of Rm with m > 1,
such as solutions of total differential equations, we can not define the Lyapunov exponent by (1)
without substantial improvements. Some appropriate definitions for the required analogs of Lya-
punov exponents in multivariate case has been proposed by E. I. Grudo [5] and M. V. Kozhero [9].

Now the following asymptotic characteristics are used for solutions of total differential equations:
strong exponents [9], (weak) characteristic exponents [9], [4, p. 115], and characteristic functionals
(vectors) [5], [4, p. 108], [3, p. 82]. Each of these notions is a straightforward generalization of
classical Lyapunov exponent and coincides with it when m = 1.

The results concerning these asymptotic characteristics are summarized by I. V. Gaishun in
monographs [3] and [4], where general and asymptotic theory of total differential equations are
systematically presented. Some additional information on these issues can be found in [12].

Let K ⊂ Rn be a closed convex cone such that K ∩ (−K) = {0}. A linear functional (in fact,
a row vector) µ ∈ (Rn)∗ is said to be positive on K if µ(x) ≥ 0 for all x ∈ K. The set K+ of all
positive on K linear functionals is called the dual cone of K.

Take any y : K → Rm.

Definition 1. A linear functional λ ∈ (Rn)∗ is said to be a characteristic functional of y with
respect to the cone K if

lim sup
∥x∥→+∞

∥x∥−1
(
λx+ ln ∥y(x)∥

)
= 0

and
lim sup
∥x∥→+∞

∥x∥−1
(
λx+ µx+ ln ∥y(x)∥

)
> 0

for all µ ∈ K+, µ ̸= 0.

The set of all characteristic functionals is called the characteristic set of y. We denote it by M[y].

Definition 2. The (weak) characteristic exponent of y is the function χ[y] : K\{0} → R defined by

χ[y](x) := lim
t→+∞

1

t∥x∥
ln ∥y(tx)∥.

There exist an interrelation between (weak) characteristic exponents and characteristic func-
tionals. In [10] (see also [12]) it was proved that if ln ∥y∥ is a Lipshitz function, then M[y] =
M[expψ[y]], where ψ[y](x) = ∥x∥χ[y](x) is the modified characteristic exponent of y.
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It occurs that the above asymptotic characteristics are useful not only in the study of total
differential equations, but also in the theory of linear ordinary differential systems. To demonstrate
this fact, consider a linear differential system

ẋ = A(t)x, x ∈ Rn, t ≥ 0, (2)

with piecewise continuous and bounded coefficient matrix A such that ∥A(t)∥ ≤ M < +∞ for all
t ≥ 0. We denote the Cauchy matrix of (2) by XA and the highest Lyapunov exponent of (2)
by λn(A).

In [16], see also [15, p. 379] and [2, p. 236], I. G. Malkin has used estimations of the form

∥XA(t, s)∥ ≤ D exp(α(t− s) + βs), t ≥ s ≥ 0, D > 0, α, β ∈ R, (3)

in order to investigate asymptotic stability of the trivial solution to a system

ẏ = A(t)y + f(t, y), y ∈ Rn, t ≥ 0,

with a nonlinear perturbation f(t, y) of a higher order.
An ordered pair (α, β) ∈ R2 is called a Malkin estimation for system (2) if there exists a

number D = D(α, β) > 0 such that (3) holds. A pair (α, β) ∈ R2 is said to be a minimal Malkin
estimation [11] if (α+ ξ, β+ η) ∈ E(A) for all ξ > 0, η > 0, and (α+ ξ, β+ η) ̸∈ E(A) for all ξ ≤ 0,
η ≤ 0, ξ2 + η2 ̸= 0.

It can be easily seen that the set of minimal Malkin estimations for system (2) coincides with
the set of Grudo characteristic vectors for the function ∥XA(t, s)∥ with respect to the cone C =
{(t, s) ∈ R2 : t ≥ s ≥ 0}. Using this fact, in [11] we have given an alternative description for the
set of minimal Malkin estimations in terms of the function

lim
s→+∞

1

(θ − 1)s
ln ∥XA(θs, s)∥. (4)

Definition 3. Let τ be an increasing sequence t0 < t1 < · · · < ts+1 of s + 2 real numbers. The
expression

PA(τ) =
s∏

i=0

∥XA(ti+1, ti)∥

is said to be a normed partition of the Cauchy matrix for system (2).

Normed partitions are common in Lyapunov exponents theory. Formulae for calculating the
central (see [2, p. 99], [8, p. 43])

Ω(A) = lim
T→+∞

lim
m→∞

1

mT

m∑
k=1

ln ∥XA(kT, kT − T )∥

as well as the exponential exponent (see [7], [8, p. 52])

∇0(A) = lim
θ→1+0

lim
m→∞

1

θm

m∑
k=1

ln ∥XA(θ
k, θk−1)∥, (5)

contain the expressions of the form

ΞA(τ) =
s∑

i=0

ln ∥XA(ti+1, ti)∥ = lnPA(τ)
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with some appropriate τ . The highest sigma-exponent (or the Izobov exponent) of system (2)
(see [6], [8, p. 225])

∇σ(A) = lim
m→∞

ξm(σ)

m
,

ξm(σ) = max
i<m

(
ln ∥XA(m, i)∥+ ξi(σ)− σi

)
, ξ1 = 0, i ∈ N,

can be represented in an equivalent form [1] (see also [14]) as

∇σ(A) = lim
m→∞

m−1 max
τ∈D0(m)

(
ΞA(τ)− σ∥τ∥i

)
, (6)

where D0(m) is the set of all increasing sequences 0 = t0 < t1 < . . . < ts+1 = m of integer numbers
with at least two terms and ∥τ∥i = t1 + · · ·+ ts. Note that τ ∈ D0(m) may have different numbers
of elements.

Let t0 = 0. Fix some k ∈ N and consider sequences 0 < t1 < · · · < tk+1 of real numbers with
k+1 elements as vectors (t1, . . . , tk+1) ∈ Rk+1. Taking K = {τ = (t1, . . . , tk+1) ∈ Rk+1 : 0 ≤ t1 <
· · · ≤ tk+1}, we define the set M[PA] and the function

ΨA(τ) = ψ[PA](τ) = lim
t→+∞

1

t
lnPA(tτ)

according to Definitions 1 and 2. By [10] (see also [12]) we have the following statements.
Proposition 1. The equality

M[PA] = M[expΨA]

holds.
Proposition 2. Let λ ∈ M[ΨA]. If for some sequence of vectors τj ∈ K ⊂ Rk+1, such that
∥τj∥ → ∞ and τj∥τj∥−1 → ξ ∈ Rk+1 as j → ∞, we have

lim
j→∞

∥τj∥−1(λτj + lnPA(τj)) = 0,

then λξ +ΨA(ξ) = 0 and λξ +ΨA(ξ) ≥ 0 for all ξ ∈ K.
We cannot use these results to calculate ∇σ(A), since in (6) the length of τ can increase

indefinitely as m increases. However, we can apply Propositions 1 and 2 to obtain some information
on finite-point approximations of ∇σ(A).

Let Dk
0(m) be a subset of D0(m) containing sequences with at most k elements.

Definition 4 ([13]). The number

∇k
σ(A) = lim

m→∞
m−1 max

τ∈Dk
0 (m)

(
ΞA(τ)− σ∥τ∥i

)
is said to be the k-point approximation for ∇σ(A).
Proposition 3. If (σ, µ) ∈ R2 is an extreme point for the epigraph of ∇k

σ(A), then the vector
(−σ, . . . ,−σ,−µ) ∈ (Rk+1)∗ is a characteristic vector for PA.
Corollary. If (σ, µ) ∈ R2 is an extreme point for the epigraph of ∇k

σ(A), then

σ
k∑

i=1

ξi + µξk+1 ≤ ΨA(ξ)

for all ξ ∈ K and there exists some ξ0 ∈ K such that

σ
k∑

i=1

ξ0i + µξ0k+1 = ΨA(ξ
0).
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On the Continuous Dependence of Solutions
to Linear Boundary Value Problems on Boundary Conditions
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1 Introduction
The general questions of the continuous dependence of solutions to boundary value problems on
parameters as applied to functional differential equations are studied in [1, 3, 4, 8], see also the
references to Section 1.5 in [1].

We consider a quite broad class of functional differential systems with aftereffect and follow the
notation and basic statements of the general theory of functional differential equations in the part
concerning linear systems with aftereffect [1, 4].

Let Ln = Ln[0, T ] be the Lebesgue space of all summable functions z : [0, T ] → Rn defined on
a finite segment [0, T ] with the norm

∥z∥Ln =

T∫
0

|z(t)| dt,

where | · | is a norm in Rn. Below we use ∥ · ∥ for the matrix norm agreed with | · |.
Denote by ACn = ACn[0, T ] the space of absolutely continuous functions x : [0; T ] → Rn with

the norm
∥x∥ACn = |x(0)|+ ∥ẋ∥Ln .

In the sequel we will use some results from [1,4].
The system

Lx = f (1.1)
with a linear bounded Volterra operator L : ACn → Ln is considered under the assumption that
the general solution of equation (1.1) has the form

x(t) = X(t)x(0) +

t∫
0

C(t, s)f(s) ds, (1.2)

where X(t) is the fundamental matrix to the homogeneous equation Lx = 0, C(t, s) is the Cauchy
matrix. A broad class of operators L with property (1.2) is described, for instance, in [5].

We consider the boundary value problems (BVPs)

Lx = f, ℓ0x = 0, (1.3)

and
Lx = f, ℓx = 0, (1.4)

where ℓ0, ℓ : ACn → Rn are linear bounded vector-functional, assuming (1.3) to be uniquely
solvable, i.e. det ℓ0X ̸= 0. We will consider the question of the continuous dependence of solutions
on the boundary conditions in terms of the proximity of ℓ to ℓ0 and the proximity of the solution
x of BVP (1.4) to the solution x0 of BVP (1.3).
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2 Two theorems
First we give a theorem that follows from the theorem on the invertible operator (see, for instance,
Theorem 3.6.3 [2]).

Theorem 2.1. Let the inequality

∆ = ∥ℓ0X − ℓX∥ · ∥(ℓ0X)−1∥ < 1 (2.1)

be fulfilled. Then BVP (1.4) is uniquely solvable and the estimate

∥x0 − x∥ACn ≤ ∥X∥ACn×n · ∆

1−∆
· ∥(ℓ0X)−1∥ · ∥ℓ∥ACn→Rn · ∥Cf∥ACn

+ ∥X∥ACn×n · ∥(ℓ0X)−1∥ · ∥ℓ0 − ℓ∥ACn→Rn · ∥Cf∥ACn

holds.

Results of the constructive study of boundary value problems, based on conditions like (2.1),
are presented systematically in [1,7], see also [6]. Condition (2.1) often turns out to be quite rigid.
To formulate the next theorem based on another approach, we introduce additional notation:

ℓ0X = Γ0 = (γ0ij)i,j=1,...,n; ℓX = Γ =
(
[γbij , γ

u
ij ]
)
i,j=1,...,n

; γ0ij ∈ [γbij , γ
u
ij ];

(ℓ0X)−1 = B0 = (β0
ij)i,j=1,...,n; (ℓX)−1 = B =

(
[βb

ij , β
u
ij ]
)
i,j=1,...,n

;

M = max
(
det Γ : γij ∈ [γbij , γ

u
ij ], i, j = 1, . . . , n

)
;

µ = min
(
det Γ : γij ∈ [γbij , γ

u
ij ], i, j = 1, . . . , n

)
.

For an (n× n)-matrix A with interval-valued elements [aij , bij ] we define ∥A∥I by the equality

∥A∥I =
∥∥(αij)i,j=1,...,n

∥∥,
where αij = max(|aij |, |bij |).

Theorem 2.2. Let the inequality
M · µ > 0

be fulfilled. Then BVP (1.4) is uniquely solvable and the estimate

∥x0 − x∥ACn ≤ ∥X∥ACn×n · ∥B0 −B∥I · ∥ℓ∥ACn→Rn · ∥Cf∥ACn

+ ∥X∥ACn×n · ∥B0∥ · ∥ℓ0 − ℓ∥ACn→Rn · ∥Cf∥ACn

holds.

This theorem allows to cover a set of boundary value problems (1.4) for which condition (2.1)
is not fulfilled.

3 An example
Consider the boundary value problem

ẋ(t) = Fx(t) + f(t), t ∈ [0, 1], ℓ01x ≡ ax1(0) + bx2(1) = 0, ℓ02x ≡ cx1(1) + dx2(0) = 0. (3.1)
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Here
F =

(
0.5 −0.1
−0.2 0.6

)
, A =

(
a b
c d

)
=

(
1 2
3 4

)
.

For definiteness, let the norm in R2 be defined by the equality |x| = max(|x1|, |x2|), hence for
B = (bij) we have

∥B∥ = max
(
|b11|+ |b12|, |b21|+ |b22|

)
.

For the case the matrix ℓ0X is defined by the equality

ℓ0X =

(
0.304 3.680
4.997 3.478

)
, (ℓ0X)−1 =

(
−0.200 0.212
0.288 −0.018

)
, ∥(ℓ0X)−1∥ = 0.413.

Thus by virtue of Theorem 2.1 problem (3.1) is uniquely solvable and, together with it, any problem

ẋ = Fx+ f, ℓx = 0 (3.2)

with ℓ such that ∥ℓX − ℓ0X∥ < 2.421 is uniquely solvable too.
Let us show that Theorem 2.2 makes it possible to go beyond this inequality. Immerse the

matrix ℓ0X into the family Γ =

(
γ11 γ12
γ21 γ22

)
with γ11 ∈ [0.2, 0.4], γ12 ∈ [3.5, 3.8], γ21 ∈ [4.5, 5.5],

γ22 ∈ [3.4, 8].
Further

max
(
detΓ : γ11 ∈ [0.2, 0.4], γ12 ∈ [3.5, 3.8], γ21 ∈ [4.5, 5.5], γ22 ∈ [3.4, 8]

)
= −12.55,

min
(
detΓ : γ11 ∈ [0.2, 0.4], γ12 ∈ [3.5, 3.8], γ21 ∈ [4.5, 5.5], γ22 ∈ [3.4, 8]

)
= −20.22,

therefore, the determinant of any matrix from the family Γ differs from zero. It should be noted
that in terms of the parameters a, b, c, d of ℓ0 it means the unique solvability for all the problems
(3.2) with a ∈ [0.862, 1.119], b ∈ [1.902, 2.065], c ∈ [2.701, 3.301], d ∈ [3.870, 8.574].

Let us take the element Γ1 =

(
0.2 3.5
5.5 8

)
from Γ and calculate

∥ℓ0X − Γ1∥ = 5.025 >
1

∥(ℓ0X)−1∥
= 2.421.

As for estimating difference of a solution x0 to (3.1) and a solution x to an arbitrary problem
from (3.2) with ℓX ∈ Γ, first we calculate

Γ−1 =

(
[−0.637,−0.168] [0.188, 0.279]

[0.272, 0.359] [−0.032,−0.010]

)

with ∥Γ−1∥I ≤ 0.805 and

ℓ0X − Γ−1 =

(
[0.032, 0.437, ] [−0.067, 0.024]

[−0.016, 0.071] [−0.008, 0.014]

)
,

hence ∥(ℓ0X)−1 − Γ−1∥I ≤ 0.504. Having in mind the representation

x0 − x = X
[
(ℓ0X)−1ℓ− (ℓX)−1ℓ0

]
Cf = X

[
(ℓ0X)−1 − (ℓX)−1

]
ℓCf +X

[
(ℓ0X)−1(ℓ0 − ℓ)

]
Cf,

we obtain

∥x0 − x∥AC2 ≤ 0.504∥X∥AC2×2 · ∥ℓ∥AC2→R2 · ∥Cf∥AC2 + 0.414∥X∥ · ∥ℓ0 − ℓ∥AC2→R2 · ∥Cf∥AC2
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and, taking into account the estimate ∥X∥AC2×2 ≤ 2.188,

∥x0 − x∥AC2 ≤ 1.103 ∥ℓ∥AC2→R2 · ∥Cf∥AC2 + 0.906 ∥ℓ0 − ℓ∥AC2→R2 · ∥Cf∥AC2 .

Note again that, in this example, the statements of Theorem 2.2 cover the set of problems including
those that do not belong to the set defined by Theorem 2.1.
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The question of finding the conditions for the convergence of solutions of systems of ordinary
differential equations arises in many problems of modern analysis and its applications. It were
deeply investigated in the case of the solutions of Cauchy’s problems for the system of first-order
differential equations. More complicated case of linear boundary-value problems was studied by
I. T. Kiguradze [2, 3] and his followers [1, 4–8].

On a finite interval (a, b) ⊂ R, we consider the systems of m ∈ N linear differential equations of
the first order

y′(t, n) +A(t, n)y(t, n) = f(t, n) (1)

with inhomogeneous boundary conditions

B(n)y( · , n) = c(n), (2)

where
B(n) : C([a, b];Cm) → Cm, n ∈ N ∪ {0}

is a linear continuous operator.
We suppose that the matrix-valued functions A( · , n) ∈ L1([a, b];Cm×m), the vector-valued

functions f( · , n) ∈ L1([a, b];Cm), and the vectors c(n) ∈ Cm.
The solution of the system of differential equations (1) is understood as a vector-valued function

y( · ) ∈ W 1
1 ([a, b];Cm) absolutely continuous on the compact interval [a, b] satisfying the vector

equation (1) almost everywhere. The inhomogeneous boundary condition (2) is correctly defined
on the solutions of system (1) and cover all classical types of boundary condition. It was shown
(see, e.g., [7]) that the boundary-value problem (1), (2) is a Fredholm problem with zero index.
For the unique solvability of this problem everywhere, it is necessary and sufficient to guarantee
that the corresponding homogeneous boundary-value problem has only a trivial solution.

Assume that the solution of problem (1), (2), with n = 0, is uniquely defined. Then the following
problems are of high importance:

Under what conditions imposed on the left-hand sides of problems (1), (2) their solutions y( · , n)
exist and are unique for sufficiently large n ∈ N? What additional conditions imposed on the left-
and right-hand sides of problems (1), (2) guarantee the limit equality

∥y( · , n)− y( · , 0)∥∞ → 0, n → ∞, (3)

where ∥ · ∥∞ – sup-norm on the compact interval [a, b].
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For the first time, these problems were investigated by Kiguradze [3] in the case of real-valued
functions.

We introduce the notation:

RA( · , n) := A( · , n)−A( · , 0) ∈ L1([a, b];Cm×m),

F ( · , n) :=


f1( · , n) 0 . . . 0
f2( · , n) 0 . . . 0

...
... . . . ...

fm( · , n) 0 . . . 0

 ∈ L1([a, b];Cm×m),

RF ( · , n) = F ( · , n)− F ( · , 0),

R∨
F (t, n) :=

t∫
a

RF (s, n) ds, R∨
A(t, n) :=

t∫
a

RA(s, n) ds.

Put also ∥ · ∥1 is the norm in Lebesgue space of vector-valued functions (matrix-valued functions)
on the interval [a, b].

Further we assume that all asymptotic relations are considered as n → ∞.

Theorem (Kiguradze [3]). Suppose that

(0) the homogeneous boundary-value problem (1), (2), with n = 0, has only the trivial solution;

(I) ∥R∨
A( · , n)∥∞ → 0;

(II) ∥RA( · , n)∥1 = O(1);

(III) B(n)y → B(0)y, y( · ) ∈ C([a, b];Cm).

Then, for sufficiently large n, problem (1), (2) possesses a unique solution. In addition, if the
right-hand sides of problems satisfy the following conditions

(IV) c(n) → c(0);

(V) ∥R∨
F ( · , n)∥∞ → 0,

then the unique solutions of problems (1), (2) satisfy the limit equality (3).

The examples show that all the conditions of Kiguradze’s Theorem are essential and none of
them can be omitted. However, some conditions can be weakened.

Denote by Mm := M(a, b;m), m ∈ N class of sequences of the matrix functions R( · , n) : N →
L1([a, b];Cm×m) such that solution Z( · , n) of the Cauchy problem

Z ′( · , n) +R( · , n)Z( · , n) = O, Z(a, n) = Im

satisfies the limit equality
∥Z( · , n)− Im∥∞ → 0,

where Im is an identity (m×m)-matrix.
Put

AF ( · , n) :=
(
A( · , n) F ( · , n)
Om Om

)
∈ L1([a, b];C2m×2m),

RAF
( · , n) := AF ( · , n)−AF ( · , 0) ∈ L1([a, b];C2m×2m),

where Om is a zero (m×m)–matrix.
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Theorem 1. In Kiguradze’s Theorem, conditions (I), (II) can be replaced by one condition

RA( · , n) ∈ Mm, (4)

if condition (V) is replaced by the following

RAF
( · , n) ∈ M2m. (5)

Conditions (4), (5) are very general but not constructive because there are no explicit descriptions
of the classes Mm and M2m.

However, the results of [4] contain explicit sufficient conditions that the sequence of matrix-
valued functions belongs to the class Mm or M2m. These sufficient conditions are more convenient
to use. Therefore, from Theorem 1 follows a number of constructive statements that generalize or
complement Kiguradze’s Theorem.

Theorem 2. In Kiguradze’s Theorem, condition (II) can be replaced by the one more general
condition

(II∗) ∥RA( · , n)R∨
A( · , n)∥1 → 0,

with the additional condition

(VI∗) ∥RA( · , n)R∨
F ( · , n)∥1 → 0.

This theorem generalizes Kiguradze’s result, since it does not contain the requirement of bound-
edness of the norms of coefficients of systems.

The advantages of Theorem 2 over Kyguradze’s Theorem become more noticeable if we consider
their applications to systems of linear differential equations of the higher order of the form

y(r)(t, n) +Ar−1(t, n)y
(r−1)(t, n) + . . .+A0(t, n)y(t, n) = f(t, n) (6)

with inhomogeneous boundary conditions

Bj(n)y( · , n) = cj(n), j ∈ {1, . . . , r} := [r], n ∈ N ∪ {0}, (7)

where Bj(n) : C
(r−1)([a, b];Cm) → Cm are linear continuous operators with j ∈ [r].

Assume that the matrix-valued functions Aj−1( · , n), the vector-valued functions f( · , n) and
the vectors cj(n) satisfy the conditions presented above for problem (1), (2).

A solution of the system of differential equations (6), (7) is understood as a vector-valued
function y( · , n) ∈ W r

1 ([a, b];Cm) satisfying the equation almost everywhere. The inhomogeneous
boundary conditions (7) are correctly defined on the solutions of system (6) and cover all classical
types of boundary conditions.

Each of these problems can be reduced to the general inhomogeneous boundary-value problem
for the system of equations of the first order. For applied to these problems, Kiguradze’s Theorem
takes the following form.

Theorem 3. Suppose that the solutions of problem (6), (7) are uniquely defined and

(I′) ∥R∨
Aj−1

( · , n)∥∞ → 0;

(II′) ∥RAj−1( · , n)∥1 = O(1);

(III′) Bj(n)y → Bj(0)y, y ∈ C(r−1)([a, b];Cm).
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Then, for sufficiently large n problems (6), (7) possess the unique solutions. Moreover, if
(IV′) cj(n) → cj(0),

(V′) ∥R∨
F ( · , n)∥∞ → 0,

then the unique solutions of problems (6), (7) satisfy the limit equality∥∥y(j−1)( · , 0)− y(j−1)( · , n)
∥∥
∞ → 0.

In this case, from Theorem 2 follows the next result.
Theorem 4. In Theorem 3, condition (II′) can be replaced by the condition

(II∗∗) ∥RAr−1( · , n)R∨
Aj−1

( · , n)∥1 → 0,
if the additional condition is fulfilled

(VI∗∗) ∥RAr−1( · , n)R∨
F ( · , n)∥1 → 0, n → ∞.

The condition (VI∗∗) is fulfilled if conditions (II′), (V′) hold.
Note also that conditions (II∗∗), (VI∗∗) are obviously fulfilled if

∥RAr−1( · , n)∥1 = O(1).

At the same time, there are no restrictions on the sequence {∥RAj−1( · , n)∥1 : n ≥ 1}, with
j ∈ [r − 1].

These and other results are presented in more detail in [6–8].
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We study on the interval I := [a, b] the fourth order ordinary differential equations

u(4)(t) = p(t)u(t) + q(t), (0.1)

and
u(4)(t) = p(t)u(t) + f(t, u(t)) + h(t), (0.2)

under the boundary conditions

u(j)(a) = 0, u(j)(b) = 0 (j = 0, 1), (0.31)
u(j)(a) = 0 (j = 0, 1, 2), u(b) = 0, (0.32)

where p, h ∈ L(I;R), f ∈ K(I × R;R).
By a solution of problem (0.2), (1.3i) (i ∈ {1, 2}) we understand a function u ∈ C̃3(I;R), which

satisfies equation (0.2) a.e. on I, and conditions (1.3i).
Throughout the paper we use the following notations.
C(I;R) is the Banach space of continuous functions u : I → R with the norm

∥u∥C = max
{
|u(t)| : t ∈ I

}
.

C̃(3)(I;R) is the set of functions u : I → R which are absolutely continuous together with their
third derivatives.

L(I;R) is the Banach space of Lebesgue integrable functions p : I → R with the norm

∥p∥L =

b∫
a

|p(s)| ds.

K(I × R;R) is the set of functions f : I × R → R satisfying the Carathéodory conditions, i.e.,
f( · , x) : I → R is a measurable function for all x ∈ R, f(t, · ) : R → R is a continuous function for
almost all t ∈ I, and for arbitrary r > 0 the inclusion

f∗
r (t) := sup

{
|f(t, x)| : |x| ≤ r

}
∈ L(I;R+

0 )

holds.
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For arbitrary x, y ∈ L(I;R), the notation

x(t) 4 y(t) (x(t) < y(t)) for t ∈ I,

means that x ≤ y (x ≥ y) and x ̸= y.
We also use the notation [x]± = (|x| ± x)/2.
The aim of our work is to study the solvability of the above mentioned problems. We have proved

the unimprovable sufficient conditions of the unique solvability for the linear problem, which show
that the solvability of problem (0.1), (0.31) ((0.1), (0.32)) depends only on the nonnegative (non
positive) part of the coefficient p if this nonnegative (non positive) part is small enough. On the
basis of these results for the nonlinear problems, sufficient conditions of solvability have been proved
in non resonance and resonance cases in which nonlinearities can have the linear growth.

Below we present some definitions from the work [2] which we need for the formulation of our
results.

Definition 0.1. Equation
u(4)(t) = p(t)u(t) for t ∈ I (0.4)

is said to be disconjugate (non-oscillatory) on I if every nontrivial solution u has less then four
zeros on I, the multiple zeros being counted according to their multiplicity.

Definition 0.2. We will say that p ∈ D+(I) if p ∈ L(I;R+
0 ), and problem (0.4), (0.31) has a

solution u such that
u(t) > 0 for t ∈ ]a, b[ . (0.5)

Definition 0.3. We will say that p ∈ D−(I) if p ∈ L(I;R−
0 ), and problem (0.4), (0.32) has a

solution u such that inequality (0.5) holds.

1 Linear problems
The proofs of the following results of the unique solvability of problems (0.1), (0.31) and (0.1), (0.32)
are based on the results from the papers [1] and [2].

Theorem 1.1. Let i ∈ {1, 2} and the function p0 ∈ L(I;R) be such that the equation

u(4)(t) = [p0(t)]+u(t) if i = 1,

u(4)(t) = −[p0(t)]−u(t) if i = 2,

is diconjugate on I. Then if the inequality

(−1)i−1[p(t)− p0(t)] ≤ 0 for t ∈ I

holds, problem (0.1), (0.3i) is uniquely solvable.

From the last theorem with p0 = [p]+ or p0 = −[p]− it immediately follows:

Corollary 1.1. Let there exist p∗ ∈ D+(I) (p∗ ∈ D−(I)) such that the inequality

[p(t)]+ 4 p∗(t) (−[p(t)]− < p∗(t) ) for t ∈ I (1.1)

holds. Then problem (0.1), (0.31) ((0.1), (0.32)) is uniquely solvable.

Remark. Condition (1.1) in Corollary 1.1 is optimal in the sense that the inequality 4 (<) can
not be replaced by the inequality ≤ (≥).
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2 Nonlinear Problem at the non resonance case
On the basis of our results for the linear problems for the nonlinear problems in non resonance
case, i.e. when problem (0.4), (0.3i) has only the trivial solution, in [3] we have proved the following
solvability theorem:
Theorem 2.1. Let i ∈ {1, 2} and there exist r ∈ R+ and g ∈ L(I;R+

0 ) such that a.e. on I the
inequality

−g(t)|x| ≤ (−1)i−1f(t, x) sgnx ≤ δ(t, |x|) for |x| > r

holds, where the function δ ∈ K(I × R+
0 ;R

+
0 ) is nondecreasing in the second argument and

lim
ρ→+∞

1

ρ

b∫
a

δ(s, ρ) ds = 0.

Then if the equation

u(4)(t) = [p(t)]+u(t) if i = 1,

u(4)(t) = −[p(t)]−u(t) if i = 2

is disconjugate, problem (0.2), (0.3i) has at least one solution.

3 Nonlinear Problem at the resonance
On the basis of Corollary 1.1 and Theorem 2.1 we proved the following Landesman–Laser type
sufficient conditions of solvability of problem (0.4), (0.3i) at the resonance case. It is well known
that problem (0.4), (0.3i) is unique solvable if (−1)i+1p(t) ≤ 0. Therefor when we speak about
problem (0.2), (0.3i) at the resonance case we must assume that the condition

(−1)i+1p(t) > 0 for t ∈ I (3.1)

holds.
Theorem 3.1. Let i ∈ {1, 2} the constant r > 0 and the functions f−, f+, g ∈ L(I;R+

0 ), p ∈
L(I;R), be such that the conditions (3.1),

p ∈ D+(I) if i = 1, p ∈ D−(I) if i = 2, (3.2)

and

f−(t) ≤ (−1)i−1f(t, x) ≤ g(t)|x| for x < −r, t ∈ I,

−g(t)|x| ≤ (−1)i−1f(t, x) ≤ −f+(t) for x > r, t ∈ I

hold. Moreover, let w be a nontrivial solution of homogeneous problem (0.4), (0.3i) and there exists
ε > 0 such that the condition

−
b∫

a

f−(s)|w(s)| ds+ εγr∥w∥C ≤ (−1)i−1

b∫
a

h(s)|w(s)| ds ≤
b∫

a

f+(s)|w(s)| ds− εγr∥w∥C ,

holds, where

γr =

b∫
a

f∗
r (s) ds.

Then for an arbitrary function h ∈ L(I;R) problem (0.2), (0.3i) is solvable.
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Also is true the following existence and uniqueness theorem.

Theorem 3.2. Let i ∈ {1, 2}, condition (3.1), (3.2) holds and f(t, 0) ≡ 0. Moreover, let there exist
functions η : R2 → ]0,+∞[ , and g, ℓ ∈ L(I;R+

0 ) such that ℓ ̸≡ 0 and the condition

−g(t)|x1 − x2| ≤ (−1)i−1(f(t, x1)− f(t, x2)) sgn(x1 − x2) ≤ −ℓ(t)η(x1, x2)|x1 − x2|,

for t ∈ I, x1, x2 ∈ R holds, where

lim
|ρ|→+∞

|ρ|η(ρ, 0) = +∞.

Then for an arbitrary function h ∈ L(I;R) problem (0.2), (0.3i) is uniquely solvable.
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We suppose that A and B are (m×n)-measurable matrices and Z(z, ε) is an n measurable vector
function. We will call a weakly nonlinear autonomous periodic differential-algebraic boundary-value
problem the problem of finding solutions [6]

z(t, ε) : z( · , ε) ∈ C1[a, b(ε)], z(t, · ) ∈ C[0, ε0], b(0) := b∗

of the differential-algebraic system

Az′ = B z + εZ(z, ε), (1)

satisfying the boundary condition
ℓz( · , ε) = α. (2)

Here, ℓz( · , ε) is a linear bounded vector functional

ℓz( · , ε) : C[a, b(ε)] → Rq.

We seek solutions of problem (1), (2) in a small neighborhood of the solution z0(t) ∈ C1[a, b∗] of
the generating Noether (q ̸= n) differential-algebraic boundary-value problem

Az′0 = B z0, ℓz0( · ) = α ∈ Rq. (3)

We assume that the vector function Z(z, ε) is a continuously differentiable with respect to the
unknown z(t, ε) in a small neighborhood of the solution of the generating problem and continuously
differentiable with respect to the small parameter ε in a small positive neighborhood of zero. The
matrix A is generally assumed to be rectangular m ̸= n, or square, but degenerate. Under the
condition

PA∗ = 0 (4)

the generating system (3) is reduced to the traditional system of ordinary differential equations [2]

z′0 = A+B z0 + PAρ0
ν0(t). (5)

Moreover, A+ is a pseudoinverse (by Moore–Penrose) matrix, PA∗ is a matrix orthoprojector

PA∗ : Rm → N(A∗),
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PAρ0
is an (n × ρ0) matrix formed by ρ0 linearly independent columns of the (n × n) matrix

orthoprojector
PA : Rn → N(A),

ν0(t) ∈ Rρ0 is an arbitrary continuous vector function. Under the condition (4) system (1) will be
called nondegenerate. Suppose that the boundary-value problem for system (3) corresponds to a
critical case

PQ∗ ̸= 0, Q := ℓX0( · ).

In the critical case for a fixed vector function ν0(t) ∈ C[a, b∗] under the condition

PQ∗
d

{
α− ℓK

[
PAρ0

ν0(s)
]
( · )

}
= 0 (6)

the generating problem (3) has an r parametric family of solutions [3]

z0(t, cr) = Xr(t)cr +G
[
PAρ0

ν0(s)
]
(t), cr ∈ Rr.

Here, X0(t) is the normal (X0(a) = In) fundamental matrix of the homogeneous part of the
differential system (5). Moreover,

G
[
PAρ0

ν0(s)
]
(t) := X0(t)Q

+ℓK
[
PAρ0

ν0(s)
]
( · ) +K

[
PAρ0

ν0(s)
]
(t)

is the generalized Green’s operator of the generating periodic differential-algebraic boundary-value
problem (3) and

K
[
PAρ0

ν0(s)
]
(t) := X0(t)

t∫
a

X−1
0 (s)PAρ0

ν0(s) ds

is the generalized Green’s operator of the Cauchy problem z(a) = 0 for the differential-algebraic
system (3). The matrix PQ∗

d
formed by d linearly independent rows of the matrix orthoprojector

PQ∗ , and the matrix PQr formed by r linearly independent columns of the matrix orthoprojector
PQ. Under condition (4) system (1) is reduced to the traditional system of the ordinary differential
equations

z′ = A+B z + PAρ0
ν0(t) + εA+Z(z, ε). (7)

The boundary-value problem for the nondegenerate differential-algebraic system (6) differs signif-
icantly from similar nonautonomous boundary-value problems depending on an arbitrary vector
function ν0(t) ∈ C[a, b∗]. In exceptional cases, the autonomous boundary-value problem (1), (2) is
solvable on a segment of fixed length.

As is known [7], an autonomous boundary-value problem for system (7) differs significantly
from similar nonautonomous boundary-value problems. Unlike the latter, the right end b(ε) of
the interval [a, b(ε)], on which we are finding solution of the nonlinear boundary-value problem for
system (7), is unknown and must be defined in the process of constructing the solution itself. Let’s
use the technique [6, 7] which consists in defining the unknown function

b(ε) = b∗ + ε(b∗ − a)β(ε)

in terms of the new unknown
β(ε) ∈ C[0, ε0], β(0) := β∗.

The function β(ε) is to be determined in the process of finding a solution of the boundary-value
problem for system (7). The essence of the reception is to replace the independent variable

t = a+ (τ − a)
(
1 + εβ(ε)

)
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and finding a solution for the nonlinear boundary-value problem (2), (7) and the function β(ε) as
a function of a small parameter. In the critical case, under the condition (6) for a fixed function
ν0(τ) the condition of solving of the nonlinear boundary-value problem (2), (7) takes the form [6]

PQ∗
d

{
(1+εβ(ε))α−ℓK

[
β(ε)

(
A+B z(s, ε)+PAρ0

ν0(s)
)
+(1+εβ(ε))A+Z(z(s, ε), ε)

]
( · )

}
= 0. (8)

Using the continuously of the nonlinear vector function Z(z(t, ε), ε) on ε in a small positive neigh-
borhood of zero, we pass to the boundary for ε → 0 in equality (8) and obtain the necessary
condition

F (č0) := PQ∗
d

{
α− ℓK

[
β∗(A+B z0(s, c

∗
r) + PAρ0

ν0(s)
)
+A+Z(z0(s, c

∗
r), 0)

]
( · )

}
= 0 (9)

for the existence of a solution of the boundary-value problem (1), (2) in a critical case. Here,

č0 :=

(
c∗r
β∗

)
∈ Rr+1.

Thus, the following lemma is proved.

Lemma. Suppose that the autonomous differential-algebraic boundary-value problem (1), (2) for a
fixed constant ν0 ∈ Rρ0 under conditions (4) and (6) corresponds to the critical case PQ∗ ̸= 0 and
has the solution z(t, ε), that for ε = 0 is transformed into generating z(t, 0) = z0(t, c

∗
r). Then the

vector č0 satisfies to equation (9).

The first r components c∗r ∈ Rr of the root of equation (9) determine the amplitude of the
generating solution z0(t, c

∗
r) in a small neighborhood of which can exist the desired solution of the

original problem (1), (2). In addition, from equation (9) can be found the value β∗ which determines
the first approximation to the unknown function

b1(ε) = b∗ + ε(b∗ − a)β∗.

If equation (9) has no real roots, then the original differential-algebraic problem (1), (2) does not
have the desired solutions. Equation (9) will be further called the equation for generating constants
of the autonomous nonlinear differential-algebraic boundary-value problem (1), (2). The statement
of the lemma generalizes the corresponding results of [1, 5] onto the case of the autonomous non-
linear differential-algebraic boundary-value problem (1), (2), namely, for the case of A ̸= In. As is
known [1,5,6], the nondegenerate differential-algebraic problem (1) (2) is solvable when the roots of
the equation for generating constants (9) are simple. Proposed in the article scheme of study of the
nonlinear autonomous boundary-value problem for a nondegenerate system of differential-algebraic
equations can be transferred, analogously to [3], onto degenerate systems of differential-algebraic
equations. The above-proposed scheme of study of the nonlinear autonomous boundary value prob-
lem for a nondegenerate system of differential-algebraic equations can be transferred, analogously
to [4], onto systems of differential-algebraic equations with a matrix of variable rank at the deriva-
tive, and analogously to [8], onto nonlinear boundary-value problems not solved with respect to
the derivative.
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We construct conditions for the existence of a solution of linear boundary-value problem for a
system of differential-algebraic equations with pulse perturbations with constant rank of a leading
coefficient matrix.

The problem of constructing solutions [2, 12]

z(t) ∈ C1
{
[a, b] \ {τi}I

}
, i = 1, 2, . . . , q

of the linear differential-algebraic system

A(t)z′(t) = B(t)z(t) + f(t), t ̸= τi, (0.1)

subject to the boundary condition [5]

ℓz( · ) = α, α ∈ Rk. (0.2)

was studied. Here,
A(t), B(t) ∈ Cm×n[a, b]

are continuous matrices,
f(t) ∈ C[a, b]

is a continuous vector function; ℓz( · ) is a linear bounded vector functional

ℓz( · ) :=
q∑

i=0

ℓiz( · ) : C1
{
[a, b] \ {τi}I

}
→ Rk,

in addition
ℓiz( · ) : C1[τi, τi+1[→ Rk, i = 0, . . . , p− 1, τ0 := a,

and
ℓqz( · ) : C1[τp, b] → Rk

are linear bounded functionals. The differential-algebraic boundary-value problem (0.1), (0.2) gen-
eralizes the traditional formulation of Noetherian boundary-value problems for systems of differ-
ential equations with pulse perturbations [2, 5, 6, 11, 12]. The differential-algebraic boundary-value
problem (0.1), (0.2) also generalizes the statements of various boundary-value problems for systems
of differential-algebraic equations [3, 4].
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1 Solvability conditions of a differential-algebraic system
with impulse perturbations

Suppose that for the differential-algebraic system (0.1) with a matrix A(t) of constant rank, the
requirements of the theorem see, [7, p. 15] are fulfilled. We fix an arbitrary continuous vector
function νp(t) ∈ Cρp [a, b]. Substituting the general solution

z(t, c) :=


Xp(t) c0 +K

[
f(s), νp(s)

]
(t), t ∈ [a; τ1[ ,

Xp(t) c1 +K
[
f(s), νp(s)

]
(t), t ∈ [τ1; τ2[ ,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Xp(t) cq +K
[
f(s), νp(s)

]
(t), t ∈ [τp; b]

of the Cauchy problem z(a) = c for the differential-algebraic equation (0.1) into the boundary
condition (0.2), we arrive at the linear algebraic equation

Qc = α− ℓKf( · ). (1.1)

Here, PQ∗ is orthoprojector
Rk → N(Q∗)

and matrix PQ∗
d

is formed from d independent lines of the orthoprojector PQ∗ , in addition,

Q :=
(
ℓ0Xp( · )ℓ1Xp( · ) · · · ℓqXp( · )

)
∈ Rk×ρp(q+1).

Equation (1.1) is solvable if and only if [1, 2]

PQ∗
d

{
α− ℓK

[
f(s), νp(s)

]
( · )

}
= 0. (1.2)

Under condition (1.2) and only under it, the general solution of equation (0.1)

c = Q+
{
α− ℓK

[
f(s), νp(s)

]
( · )

}
+ PQr cr, cr ∈ Rr

determines the general solution of the boundary-value problem (0.1), (0.2)

z(t, cr) = Xr(t)cr +X(t)Q+
{
α− ℓK

[
f(s), νp(s)

]
( · )

}
+K

[
f(s), νp(s)

]
(t), cr ∈ Rr.

Here, PQ is an orthoprojector matrix

Rρp(q+1) → N(Q);

the matrix PQr ∈ Rρp(q+1)×r is composed of r linearly independent columns of the orthoprojector

PQ :=


P

(0)
Q

P
(1)
Q

. . . .

P
(q)
Q

 ∈ Rρp(q+1)×ρp(q+1),

in addition, c0, c1, . . . , cq ∈ Rρp are constants

c := col(c0, . . . , cq) := Q+
{
α− ℓK

[
f(s), νp(s)

]
( · )

}
∈ Rρp(q+1).

Thus, the following lemma is proved.
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Lemma. Suppose that the differential-algebraic equation (0.1) satisfies the requirements of the
theorem in the article [7, p. 15]. Under condition (1.2) and only under it, for a fixed continuous
vector function

νp(t) ∈ Cρp [a, b],

general solution of the differential-algebraic boundary-value problem (0.1), (0.2)

z(t, cr) = Xr(t) cr +G
[
f(s); νp(s);α

]
(t), cr ∈ Rr

defines the generalized Green’s operator of the differential-algebraic boundary-value problem (0.1), (0.2)

G
[
f(s); νp(s);α

]
(t) :=


Xp(t)c0 +K

[
f(s), νp(s)

]
(t), t ∈ [a, τ1[ ,

Xp(t)c1 +K
[
f(s), νp(s)

]
(t), t ∈ [τ1, τ2[ ,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Xp(t)cq +K
[
f(s), νp(s)

]
(t), t ∈ [τp, b].

Here,

Xr(t) =


Xp(t)P

(0)
Q , t ∈ [a, τ1[ ,

Xp(t)P
(1)
Q , t ∈ [τ1, τ2[ ,

. . . . . . . . . . . . . . . . . . . . .

Xp(t)P
(q)
Q , t ∈ [τp, b].

Note that the matrix differential-algebraic boundary-value problem with pulse perturbations,
studied in the article [10], is reduced to the form (0.1), (0.2), while in the articles [9–11] the case
of a non-degenerate system of the form (0.1) was studied. We also note the essentiality of the
requirement of constancy of the rank of the matrix under the derivative [7, 8].
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The theory of the Cauchy problem for ordinary differential equations and systems with non-
integrable singularities in the time variable was constructed in the early 1970s (see, e.g., [1] and
the references therein). However, the investigation of this problem for singular in phase variables
differential equations was started later (see [2]). In [3], unimprovable in a certain sense conditions
are established guaranteeing, respectively, the solvability, unique solvability and unsolvability of
the Cauchy weighted problem for singular in time and phase variables ordinary delayed differential
equations. The results below are refinements of the theorems proved in [3] on the solvability and
unsolvability of the Cauchy weighted problem for differential equations without delay.

We use the following notation.

µ! = 1 for µ ∈ ] − 1, 0] and µ! =
m∏
i=0

(i + µ0) for µ = m + µ0, where µ0 ∈ ]0, 1[ and m is a
nonnegative integer;

R+ = [0,+∞[ , R0+ = ]0,+∞[ ;
If n is a natural number, α ∈ R0+, x ∈ R0+, and q : ]a, b[→ R+ is a continuous function,

satisfying the condition
t∫

a

q(s) ds < +∞ for a < t < b,

then

Dn,α
∗ ( ]a, b[ ;x) =

{
(t, x1, . . . , xn) ∈ ]a, b[×Rn

0+ : xi ≥
α!

(n− i+ α)!
(t− a)n−i+αx (i = 1, . . . , n)

}
,

Dn,α( ]a, b[ ;x; q)

=
{
(t, x1, . . . , xn) ∈ ]a, b[×Rn

0+ : Q(i−1)(t) ≤ xi ≤
α!

(n− i+ α)!
(t− a)n−i+αx (i = 1, . . . , n)

}
,

where

Q(t) =
1

(n− i)!

t∫
a

(t− s)n−1q(s) ds.

Consider the differential equation

u(n) = f(t, u, . . . , u(n−1)) (1)
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with the weighted initial conditions

lim sup
t→a

u(i−1)(t)

(t− a)n−i+α
< +∞ (i = 1, . . . , n), (2)

where f : ]a, b[×Rn
0+ → R+ is a continuous function, and α is a positive constant.

We are interested in the case where the function f has singularities in both time and phase
variables, i.e. the case, where

t∫
a

f(s, x1, . . . , xn) ds = +∞ for a < t < b, (x1, . . . , xn) ∈ Rn
0+,

lim
x1+···+xn→0

f(t, x1, . . . , xn) = +∞ for a < t < b.

By a solution of Eq. (1) it is naturally understood an n-times continuously differentiable
function u : ]a, b[→ R, satisfying this equation together with the inequalities

u(i−1)(t) > 0 (i = 1, . . . , n)

in the interval ]a, b[ .

Theorem 1. Let the function f in the domain ]a, b[×Rn
0+ admit the estimate

f(t, x1, . . . , xn) ≥ q(t),

where q : ]a, b[→ R+ is a continuous function, satisfying the condition

x0 = lim sup
t→a

(
(t− a)−α

t∫
a

q(s) ds

)
< +∞.

Let, moreover, there exist continuous functions p and q0 : ]a, b[→ R+ such that

lim sup
t→a

(
(t− a)−α

t∫
a

p(s) ds

)
< 1, lim sup

t→a

(
(t− a)−α

t∫
a

q0(s) ds

)
< +∞,

and on the set Dn,α(]a, b[ ;x; q) the inequality

f(t, x1, . . . , xn) ≤ p(t)x+ q0(t)

holds for any x > x0. Then problem (1), (2) has at least one solution.

The restrictions imposed on the function f in the above theorem are optimal in a certain sense.
The following theorem is valid.

Theorem 2. Let the function f in the domain Dn,α
∗ ( ]a, b[ ;x) admit the estimate

f(t, x1, . . . , xn) ≥ p(t)x+ q(t),

where p and q : ]a, b[→ R+ are continuous functions, satisfying the conditions

t∫
a

p(s) ds < +∞,

t∫
a

q(s) ds < +∞ for a < t < b, lim inf
t→a

(
(t− a)−α

t∫
a

q(s) ds

)
> 0.
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Let, moreover, either

lim sup
t→a

(
(t− a)−α

t∫
a

q(s) ds

)
= +∞,

or there exist b0 ∈ ]a, b[ such that
t∫

a

p(s) ds ≥ (t− a)α for a ≤ t ≤ b0.

Then problem (1), (2) has no solution.

The two corollaries below of Theorems 1 and 2 concern the case where the function f in the
domain ]a, b[×Rn

0+ admits one of the following two estimates

q(t) ≤ f(t, x1, . . . , xn) ≤
m∑
i=1

(
pi(t)

n∏
k=1

xγikk + qi(t)

n∏
k=1

x−λik
k

)
+ q0(t), (3)

f(t, x1, . . . , xn) ≥
m∑
i=1

(
pi(t)

n∏
k=1

xγikk + qi(t)

n∏
k=1

x−λik
k

)
+ q(t), (4)

or Eq. (1) has the form

u(n) =

m∑
i=1

(
pi(t)

n∏
k=1

(u(k−i))γik + qi(t)

n∏
k=1

(u(k−i))−λik

)
+ q0(t). (5)

Here and in what follows we assume that m is an arbitrary natural number, γik, λik (i = 1, . . . ,m;
k = 1, . . . , n) are nonnegative constants, satisfying the conditions

n∑
k=1

γik = 1,
n∑

k=1

λik > 0 (i = 1, . . . ,m),

and pi : ]a, b[→ R+ (i = 1, . . . ,m), qj : ]a, b[→ R+ (j = 0, . . . ,m) and q : ]a, b[→ R+ are continuous
functions.

Let

ℓi =
n∏

k=1

( α!

(n− k + α)!

)γik
, µi =

n∑
k=1

(n− k + α)γik, νi =
n∑

k=1

(n− k + α)λik (i = 1, . . . ,m).

Corollary 1. If along with estimate (3) the conditions

lim sup
t→a

( m∑
i=1

ℓi(t− a)−α

t∫
a

(s− a)µipi(s) ds

)
< 1, (6)

lim sup
t→a

(
(t− a)−α

t∫
a

(
q0(s) +

m∑
i=1

(s− a)−νiqi(s)
)
ds

)
< +∞, (7)

lim inf
t→a

(
(t− a)−α

t∫
a

q(s) ds

)
> 0, lim sup

t→a

(
(t− a)−α

t∫
a

q(s) ds

)
< +∞

hold, then problem (1), (2) has at least one solution.
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Corollary 2. Let the function f admit estimate (4) and let, moreover, either the condition

lim sup
t→a

(
(t− a)−α

t∫
a

(
q0(s) +

m∑
i=1

(s− a)−νiqi(s)
)
ds

)
= +∞ (8)

hold or there exist numbers b0 ∈ ]a, b[ , δ > 0 such that in the interval ]a, b0[ the following inequalities
are satisfied:

m∑
i=1

ℓi

t∫
a

(s− a)µipi(s) ds ≥ (t− a)α,

t∫
a

q0(s) ds ≥ δ(t− a). (9)

Then problem (1), (2) has no solution.

The above corollaries imply the following statements for problem (5), (2).

Corollary 3. If along with inequalities (6), (7), the inequality

lim inf
t→a

(
(t− a)−α

t∫
a

q0(s) ds

)
> 0 (10)

holds, then problem (5), (2) has at least one solution. If condition (8) is satisfied or for some
b0 ∈ ]a, b[ and δ > 0 inequalities (9) hold, then problem (5), (2) has no solution.

Corollary 4. Let inequality (10) hold and let there exist numbers b0 ∈ ]a, b[ and ℓ ≥ 0 such that
in the interval ]a, b[ the following equality

m∑
i=1

ℓi(t− a)µipi(t) = ℓ(t− a)α−1

is satisfied. Then for the solvability of problem (5), (2) it is necessary and sufficient that, along
with (7), the condition

ℓ < α

be satisfied.

Remark. Let

pi(t) ≡ pi0(t− a)
−

n∑
k=1

(n−k)γik−1
, qi(t) ≡ qi0(t− a)ν0i (i = 1, . . . ,m),

q(t) = q00(t− a)α−1,

where pi0, qi0 (i = 1, . . . ,m), q00 are positive constants and

ν0i > ν − 1 (i = 1, . . . ,m).

Then, according to Corollary 4, for the solvability of problem (5), (2) it is necessary and sufficient
that the inequality

m∑
i=1

ℓip0i < α

be satisfied.
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1 Introduction
We consider a canonical Hamiltonian ordinary differential system with n degrees of freedom

dqi
dt

= ∂pi
H(q, p),

dpi
dt

= − ∂qi
H(q, p), i = 1, . . . , n, (1.1)

where q = (q1, . . . , qn) ∈ Rn and p = (p1, . . . , pn) ∈ Rn are the generalized coordinates and
momenta, t ∈ R, and the Hamiltonian H : R2n → R is a polynomial of degree h > 2.

In this paper, using the Darboux theory of integrability [3,4] and the notion of partial integral
(multiple partial integral, conditional partial integral) [5,8–11], we study the existence of additional
non-autonomous first integrals of the autonomous polynomial Hamiltonian system (1.1).

The Darboux theory of integrability (or the theory of partial integrals) was established by
the French mathematician Jean-Gaston Darboux [3] in 1878, which provided a link between the
existence of first integrals and invariant algebraic curves (or partial integrals) for polynomial au-
tonomous differential systems. For the polynomial differential systems, the Darboux theory of
integrability is one of the best theories for studying the existence of first integrals (see [4, 6, 12]).

To avoid ambiguity, we give the following notation and definitions.
The Poisson bracket of functions u, v ∈ C1(G) on a domain G ⊂ R2n is the function

[
u(q, p), v(q, p)

]
=

n∑
i=1

(
∂qi

u(q, p) ∂pi
v(q, p)− ∂pi

u(q, p) ∂qi
v(q, p)

)
for all (q, p) ∈ G.

We say that [4, p. 20] the linear differential operator of first order

B(t, q, p) = ∂
t
+

n∑
i=1

(
∂pi

H(q, p)∂qi
− ∂qi

H(q, p)∂pi

)
for all (t, q, p) ∈ R2n+1

is the operator of differentiation by virtue of the Hamiltonian system (1.1).
A function F ∈ C1(D) is called a first integral on the domain D ⊂ R2n+1 of the Hamiltonian

system (1.1) if BF (t, q, p) = 0 or

∂
t
F (t, q, p) +

[
F (t, q, p),H(q, p)

]
= 0 for all (t, q, p) ∈ D.
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A function F ∈ C1(G) is an autonomous first integral of the Hamiltonian system (1.1) if the
functions F and H are in involution, i.e., [F (q, p),H(q, p)] = 0 for all (q, p) ∈ G ⊂ R2n. Notice that
the Hamiltonian H is an autonomous first integral of the Hamiltonian differential system (1.1).

A set of functionally independent on D ⊂ R2n+1 first integrals Fl ∈ C1(D), l = 1, . . . , k, of the
Hamiltonian system (1.1) is called a basis of first integrals (or integral basis) on the domain D of
system (1.1) if any first integral F ∈ C1(D) of system (1.1) can be represented on D in the form

F (t, q, p) = Φ
(
F1(t, q, p), . . . , Fk(t, q, p)

)
for all (t, q, p) ∈ D,

where Φ is some continuously differentiable function. The number k is said to be the dimension of
basis of first integrals on the domain D for the Hamiltonian differential system (1.1).

The Hamiltonian differential system (1.1) on an neighbourhood of any point from the domain D
has a basis of first integrals of dimension 2n (see, for example, [4, p. 54]). Besides, the autonomous
Hamiltonian differential system (1.1) on a domain G without equilibrium points has an autonomous
integral basis of dimension 2n− 1 [1, pp. 167–169].

A polynomial w is a partial integral of the Hamiltonian system (1.1) if the Poisson bracket[
w(q, p),H(q, p)

]
= w(q, p)M(q, p) for all (q, p) ∈ R2n, (1.2)

where the polynomial M (cofactor of the partial integral w) such that degM 6 h− 2.
A partial integral w with cofactor M of the Hamiltonian system (1.1) is said to be multiple with

multiplicity

κ = 1 +

ε∑
ξ=1

r
ξ

if there exist natural numbers fξ and polynomials

Qf
ξ
g
ξ
, gξ = 1, . . . , rξ, ξ = 1, . . . , ε,

such that on the domain G ⊂ {(q, p) : w(q, p) ̸= 0} the identities hold

[Q
f
ξ
g
ξ

(q, p)

w
fξ (q, p)

,H(q, p)

]
= R

f
ξ
g
ξ

(q, p), gξ = 1, . . . , rξ, ξ = 1, . . . , ε, (1.3)

where the polynomials Rf
ξ
g
ξ

have degrees at most h − 2. Note that a similar point of view on
multiplicity of partial integrals was presented by J. Llibre and X. Zhang in [7].

An exponential function ω(q, p) = exp v(q, p) for all (q, p) ∈ R2n with some real polynomial v is
called a conditional partial integral of the Hamiltonian system (1.1) if the Poisson bracket[

v(q, p),H(q, p)
]
= S(q, p) for all (q, p) ∈ R2n, (1.4)

where the polynomial S (cofactor of the conditional partial integral ω) such that degS 6 h− 2.
We stress that a conditional partial integral is a special case of exponential factor (or exponential

partial integral) [2, 5, 6] for the polynomial Hamiltonian ordinary differential system (1.1).

2 Main results
The general results of this paper are formulated in Theorems 2.1–2.3.
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Theorem 2.1. If the Hamiltonian system (1.1) has the partial integral w with cofactor

M(q, p) = λ for all (q, p) ∈ R2n, λ ∈ C \ {0}, (2.1)

then an non-autonomous first integral of the autonomous Hamiltonian system (1.1) is the function

F (t, q, p) = w(q, p) exp
(
− λt

)
for all (t, q, p) ∈ R2n+1.

Proof. Using the identity (1.2) under the condition (2.1), we have

BF (t, q, p) = ∂
t
F (t, q, p) +

[
F (t, q, p),H(q, p)

]
= F (t, q, p) ∂

t

(
− λt

)
+ exp

(
− λt

) [
w(q, p),H(q, p)

]
= 0 for all (t, q, p) ∈ R2n+1.

Therefore the function F is a first integral of the autonomous Hamiltonian system (1.1).

For example, the autonomous polynomial Hamiltonian differential system given by

H(q, p) =
1

2

(
p21 + p22 − q21 − q22

)
for all (q, p) ∈ R4 (2.2)

has the polynomial partial integrals

w1(q, p) = q1 − p1, w2(q, p) = q2 − p2, w3(q, p) = q1 + p1, w4(q, p) = q2 + p2

with cofactors

M1(q, p) = M2(q, p) = − 1, M3(q, p) = M4(q, p) = 1 for all (q, p) ∈ R4.

By Theorem 2.1, we can build the non-autonomous first integrals of the Hamiltonian sys-
tem (2.2)

F1(t, q, p) = (q1− p1)e
t, F2(t, q, p) = (q2− p2)e

t,

F3(t, q, p) = (q1+ p1)e
−t, F4(t, q, p) = (q2+ p2)e

−t.

The functionally independent non-autonomous first integrals F1, . . . , F4 are an integral basis
(non-autonomous) of the autonomous Hamiltonian system (2.2) on the space R5.

Theorem 2.2. Suppose the polynomial Hamiltonian differential system (1.1) has the partial integral
w with multiplicity

κ = 1 +

ε∑
ξ=1

rξ.

If the identity (1.3) under some numbers ξ ∈ {1, . . . , ε} and gξ ∈ {1, . . . , rξ} such that the polynomial

R
f
ξ
g
ξ

(q, p) = λ for all (q, p) ∈ G ⊂ R2n, λ ∈ R, (2.3)

then an non-autonomous first integral of the autonomous Hamiltonian system (1.1) is the function

F (t, q, p) = K
f
ξ
g
ξ

(q, p) − λt for all (t, q, p) ∈ R×G.
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Proof. Taking into account the identity (1.3) under the condition (2.3), we obtain

BF (t, q, p) = ∂
t
F (t, q, p) +

[
F (t, q, p),H(q, p)

]
= − ∂

t

(
λt

)
+
[
K

f
ξ
g
ξ

(q, p),H(q, p)
]
= 0.

For example, the autonomous polynomial Hamiltonian differential system given by [9]

H(q, p) = −q21 + 6q1q2 + (2p1+ p2)q1+ 2q2p2 + 3p22 for all (q, p) ∈ R4 (2.4)

has the multiple partial integral w1(q, p) = 3q1 + 2p2 for all (q, p) ∈ R4 with

M1(q, p) = − 2, K1,11(q, p) =
17q1 + 12q2 + 8p1
32(3q1 + 2p2)

, R1,11(q, p) = 1,

and the multiple partial integral w2(q, p) = q1 for all (q, p) ∈ R4 with

M2(q, p) = 2, K2,11(q, p) =
2q2 + 3p2

16q1
, R2,11(q, p) = − 1.

Using Theorems 2.1 and 2.2, we can construct the basis (non-autonomous) of first integrals on
a domain R×G, G ⊂ G1 ∩G2, for the autonomous polynomial Hamiltonian system (2.4)

F1(t, q, p) = (3q1 + 2p2)e
2t, F2(t, q, p) =

17q1 + 12q2 + 8p1
16(3q1 + 2p2)

− t, G1 ⊂
{
(q, p) : 3q1 + 2p2 ̸= 0

}
,

F3(t, q, p) = q1 e
−2t, F4(t, q, p) =

2q2 + 3p2
8q1

+ t, G2 ⊂
{
(q, p) : q1 ≠ 0

}
.

Notice also that the functionally independent autonomous first integrals (see [9])

W1(q, p) = (3q1 + 2p2) exp
(17q1 + 12q2 + 8p1

16(3q1 + 2p2)

)
for all (q, p) ∈ G1,

W2(q, p) = q1 exp
(2q2 + 3p2

8q1

)
for all (q, p) ∈ G2,

W3(q, p) =
17q1 + 12q2 + 8p1
32(3q1 + 2p2)

+
2q2 + 3p2

16q1
for all (q, p) ∈ G

of system (2.4) are an autonomous integral basis of the Hamiltonian system (2.4) on any
domain G.

Theorem 2.3. Suppose the polynomial Hamiltonian differential system (1.1) has the conditional
partial integral ω. If the identity (1.4) such that the polynomial

S(q, p) = λ for all (q, p) ∈ R2n, λ ∈ R \ {0}, (2.5)

then the Hamiltonian system (1.1) has the non-autonomous first integral

F (t, q, p) = v(q, p)− λt for all (t, q, p) ∈ R2n+1.

Proof. Using the identity (1.4) under the condition (2.5), we get

BF (t, q, p) = ∂
t
F (t, q, p) +

[
F (t, q, p),H(q, p)

]
= ∂

t

(
− λt

)
+
[
v(q, p),H(q, p)

]
= 0.
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We study the following non-linear integral boundary value problem

dx(t)

dt
= f(t, x(t)), t ∈ [a, b],

b∫
a

g(s, x(s)) ds = d, (1)

where f ∈ C([a, b]×D;Rn), g ∈ C([a, b]×D;Rn), d ∈ Rn is a given vector and the domain D ⊂ Rn

will be specified later (See, (7), (8)). Moreover, we suppose that f ∈ Lip(K,D), g ∈ Lip(Kg, D),
i.e., f and g locally Lipsichitzian

|f(t, u)− f(t, v)| ≤ K|u− v|, for all {u, v} ⊂ D and t ∈ [a, b], (2)
|g(t, u)− g(t, v)| ≤ Kg|u− v|, for all {u, v} ⊂ D and t ∈ [a, b].

To study the BVP (1) we will use an approach similar to that of [1].
For vectors x = col(x1, . . . , xn) ∈ Rn the notation |x| = col(|x1|, . . . , |xn|) is used and the

inequalities between vectors are understood componentwise. The same convention is adopted for
operations like “max” and “min”. For any non-negative vector ρ ∈ Rn under the componentwise
ρ-neighbourhood of a point z ∈ Rn we understand the set

Oρ(z) :=
{
ξ ∈ Rn : |ξ − z| ≤ ρ

}
. (3)

Similarly, the ρ-neighbourhood of a domain Ω ⊂ Rn is defined as

Oρ(Ω) :=
⋃
z∈Ω

Oρ(z). (4)

A particular kind of vector ρ will be specified below in relations (7), (8).
In is the identity matrix of dimension n. r(K) is the maximal, in modulus, eigenvalue of the

matrix K. We also assume that

r(Q) < 1, Q =
3(b− a)

10
K. (5)
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Let us choose certain compact convex sets Da ⊂ Rn and Db ⊂ Rn, and define the set

Da,b := (1− θ)z + θη, z ∈ Da, η ∈ Db, θ ∈ [0, 1] (6)

and according to (4) its ρ-neighbourhood

D = Oρ(Da,b) (7)

with a non-negative vector ρ = col(ρ1, . . . , ρn) ∈ Rn such that

ρ ≥ b− a

2
δ[a,b],D(f), (8)

where δ[a,b],D(f) denotes the 1/2 of oscillation of function f over [a, b]×D ×D

δ[a,b],D(f) :=

max
(t,x)∈[a,b]×D

f(t, x)− min
(t,x)∈[a,b]×D

f(t, x)

2
. (9)

Instead of the original boundary value problem (1) we will consider the family of auxiliary two-point
parametrized boundary value problems

dx(t)

dt
= f(t, x(t)), t ∈ [a, b], (10)

x(a) = z, x(b) = η, (11)

where z and η are treated as free parameters.
Let us connect with problem (10), (11) the sequence of functions

xm+1(t, z, η) = z +

t∫
a

f(s, xm(s, z, η)) ds

− t− a

b− a

b∫
a

f(s, xm(s, z, η)) ds+
t− a

b− a
[η − z], t ∈ [a, b], m = 0, 1, 2, . . . , (12)

satisfying (11) for arbitrary z, η ∈ Rn, where

x0(t, z, η) = z +
t− a

b− a
[η − z] =

(
1− t− a

b− a

)
z +

t− a

b− a
η, t ∈ [a, b]. (13)

It is easy to see from (13) that x0(t, z, η) is a linear combination of vectors z and η, when z ∈ Da,
η ∈ Db.

We have previously proved the following statements.

Theorem 1 (Uniform convergence). Let conditions (2), (5), (8) be fulfilled.
Then, for all fixed (z, η) ∈ Da ×Db we have

1. The functions of sequence (12) belonging to the domain D of form (7) are continuously
differentiable on the interval [a, b] and satisfy conditions (11).

2. The sequence of functions (12) for t ∈ [a, b] converges uniformly as m → ∞ with respect to
the domain (t, z, η) ∈ [a, b]×Da ×Db to the limit function

x∞(t, z, η) = lim
m→∞

xm(t, z, η), (14)

satisfying conditions (11).
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3. The function x∞(t, z, η) for all t ∈ [a, b] is a unique continuously differentiable solution of
the integral equation

x(t) = z +

t∫
a

f(s, x(s)) ds− t− a

b− a

b∫
a

f(s, x(s)) ds+
t− a

b− a
[η − z], (15)

i.e., it is the solution to the Cauchy problem for the modified system of integro-differential
equations

dx

dt
= f(t, x(t)) +

1

b− a
∆(z, η), x(a) = z, (16)

where ∆(z, η) : Da ×Db → Rn is a mapping given by the formula

∆(z, η) = [η − z]−
b∫

a

f(s, x∞(s, z, η)) ds. (17)

4. The error estimation∣∣x∞(t, z, η)− xm(t, z, η)
∣∣ 6 10

9
α1(t)Q

m(1n −Q)−1δ[a,b],D(f), t ∈ [a, b], m ≥ 0 (18)

holds, where

α1(t) = 2(t− a)
(
1− t− a

b− a

)
≤ b− a

2
, t ∈ [a, b].

Theorem 2 (Relation x∞(t, z, η) to the solution of the original boundary value problem (1)). Under
the assumptions of Theorem 1, the limit function x∞(t, z, η) = lim

m→∞
xm(t, z, η) of sequence (12) is

a solution to the integral boundary value problem (1) if and only if the pair of vector-parameters
(z, η) satisfies the system of 2n determining algebraic equations

∆(z, η) := [η − z]−
b∫

a

f(s, x∞(s, z, η)) ds = 0, Λ(z, η) =

t∫
a

g(s, x∞(s, z, η)) ds = d. (19)

On the base of mth approximate determining equations

∆m(z, η) := [η − z]−
b∫

a

f(s, xm(s, z, η)) ds = 0, Λm(z, η) =

t∫
a

g(s, xm(s, z, η)) ds = d (20)

introduce the mapping Hm : Da ×Db → R2n

Hm(z, η) =

[η − z]−
b∫

a

f(s, x∞(s, z, η)) ds

Λm(z, η)− d

 . (21)

Theorem 3 (Sufficient conditions for the solvability of the integral boundary value problem (1)).
Assume that the conditions of Theorem 1 hold. Moreover, one can specify an m ≥ 1 and set
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Ω ⊂ R2n of the form Ω := D1 ×D2 , where D1 ⊑ Da, D2 ⊑ Db are certain bounded open sets, such
that the mapping Hm, satisfies the relation

|Hm(z, η)|B∂Ω

10(b− a)2

27
KQm(In −Q)−1δ[a,b],D(f)

5(b− a)

9
KgQ

m(In −Q)−1δ[a,b],D(f)

 (22)

on the boundary ∂Ω, where the binary relation B∂Ω in (22) means that for all (z, η) ∈ ∂Ω at least
one of the components k(z, η) of the vector Hm(z, η) is greater than the corresponding component
of the right hand side vector in (22). (One can see, that the number k(z, η) of components depends
on the point (z, η) ∈ ∂Ω.)

If, in addition, the Brouwer’s degree of the mapping Hm does not equal to zero, i.e.,

deg(Hm,Ω, 0) ̸= 0, (23)

then there exists a pair (z∗, η∗) from D1 × D2 for which the function x∗( · ) = x∞( · , z∗, η∗)
is a continuously differentiable solution to the boundary value problem (1), where x∞(t, z∗, η∗) =
lim

m→∞
xm(t, z∗, η∗), t ∈ [a, b].

In order to verify condition (22) of Theorem 3 one has to use the recurrence formula (12) to
compute the function xm( · , z, η) analytically, depending on the parameters z and η, at every point
(z, η) ∈ ∂Ω, verify whether at least one component of the 2n-dimensional vector |Hm(z, η)| is strictly
greater than the corresponding component of the vector at right hand side of (22). Verification
of the validity of (23) is a rather difficult problem in general. But in the smooth case, it follows
directly from the definition of the topological degree, that if the Jacobian matrix of the function
Hm in (21) is non-singular at its isolated zero (z0m, η0m), i.e.,

det
∂

∂(z, η)
Hm(z0m, η0m) ̸= 0,

then inequality (23) holds. The symbol ∂
∂(z,η) means the derivative with respect to the vector of

variables (z1, . . . , zn, η1, . . . , ηn).
We proved the following lemma about the continuous dependence of the limit function

x∞( · , z, η) and determining functions ∆(z, η),Λ(z, η) defined in (19) with respect to parameters
(z, η) ∈ Da ×Db.

Lemma 1. Let the assumptions of Theorem 1 be satisfied for the integral boundary value problem
(1). Then for arbitrary pairs of parameters (z′, η′) ∈ Da × Db and (z′′, η′′) ∈ Da × Db, the limit
functions x′∞( · , z′, η′), x′′∞( · , z′′, η′′) of sequence (12) for t ∈ [a, b] satisfy the following Lipschitz-
type condition∣∣x′∞( · , z′, η′)− x′′∞( · , z′′, η′′)

∣∣ ≤ [
In +

10

9
α1( · )K(In −Q)−1

] [
|z′ − z′′|+ |η′ − η′′|

]
. (24)

Formulas (19) determine well defined functions ∆(z, η) : R2n → Rn and Λ(z, η) : R2n → Rn,
which in addition satisfy the following Lipschitz-type estimates

∣∣∆(z′, η′)−∆(z′′, η′′)
∣∣ ≤ [

In +
(
(b− a)K +

10

27
(b− a)2K(In −Q)−1

)] [
|z′ − z′′|+ |η′ − η′′|

]
,

∣∣Λ(z′, η′)− Λ(z′′, η′′)
∣∣ ≤ [(

(b− a)Kg +
10

27
Kg(b− a)2K(In −Q)−1

)] [
|z′ − z′′|+ |η′ − η′′|

]
.
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The following statement gives a condition which is necessary for the domain

Ω = Ga ×Gb, Ga ⊑ Da, Gb ⊑ Db (25)

to contain a pair of parameters (z∗, η∗) determining the solution

x( · ) = x∞( · , z∗, η∗) = lim
m→∞

xm( · , z∗, η∗)

of the given integral boundary value problem (1).

Theorem 4. Let the assumptions of Theorem 1 be satisfied for the integral boundary value problem
(1). Then for domain (25) to contain a pair of parameters (z∗, η∗) determining the solution x( · )
of the given integral boundary value problem at the points t = a and t = b

x(a) = z∗ and x(b) = η∗,

it is necessary that for all m and arbitrary z̃ ∈ Ga, η̃ ∈ Gb to be true for the approximate determining
functions the following inequalities

∆m(z̃, η̃) ≤ sup
z∈Ga, η∈Gb

[
In +

(
(b− a)K +

10

27
(b− a)2K(In −Q)−1

)] [
|z′ − z′′|+ |η′ − η′′|

]
+

10

27
(b− a)2KQm(1n −Q)−1δ[a,b],D(f),

Λm(z̃, η̃) ≤ sup
z∈Ga, η∈Gb

[(
(b− a)Kg +

10

27
Kg(b− a)2K(In −Q)−1

)] [
|z′ − z′′|+ |η′ − η′′|

]
+

10

27
(b− a)2KgQ

m(1n −Q)−1δ[a,b],D(f).
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For a given zero neighborhood G in the Euclidean space Rn, we consider a nonlinear, generally
speaking, differential system of the form

ẋ = f(t, x), f(t, 0) = 0, t ∈ R+ ≡ [0,+∞), x ∈ G, (1)

where the right-hand side satisfies the condition f, f ′
x ∈ C(R+×G) and the zero solution is allowed.

We associate with system (1) the linear homogeneous system of its first approximation

ẋ = A(t)x ≡ f′(t, x), A(t) ≡ f ′
x(t, 0), t ∈ R+, x ∈ Rn, (2)

for which we do not require here the uniformity in t ∈ R+ of the natural (pointwise) smallness of
the nonlinear addition

h(t, x) ≡ f(t, x)−A(t)x = o(x), x → 0.

Denote by xf ( · , x0) and S∗(f) or Sδ(f) a non-extendable solution of system (1) with the initial
condition xf (0, x0) = x0 and sets of solutions with initial values x0, satisfying the conditions |x0| ̸= 0
or, respectively, 0 < |x0| < δ.

Definition 1. Wandering functional P(u, t), defined for numbers t ∈ R+ and continuously-diffe-
rentiable functions u : [0, t] → Rn \ {0}, is given by the formula

P(t, u) ≡
t∫

0

∣∣∣( u(τ)

|u(τ)|

)·∣∣∣ dτ, τ ∈ [0, t],

adding that whenever the function u is not defined on the entire segment [0, t], it takes the value
+∞. For each system (1), momentum t ∈ R+, and non-degenerate transformation L ∈ AutRn we
define the values of the lower and the upper ball wandering functionals, given respectively by the
equalities

P̌b(f, t, L) ≡ lim
x0→0

P(t, Lxf ( · , x0)), P̂b(f, t, L) ≡ lim
x0→0

P(t, Lxf ( · , x0)). (3)

Lower weak ρ̌ ◦
b (f) and strong ρ̌ •

b (f) ball wandering indicators of system (1) are given by the formulas

ρ̌ ◦
b (f) ≡ lim

t→+∞
inf

L∈AutRn
t−1P̌b(f, t, L), ρ̌ •

b (f) ≡ inf
L∈AutRn

lim
t→+∞

t−1P̌b(f, t, L), (4)

and upper weak ρ̂ ◦
b (f) and strong ρ̂ •

b (f) ball wandering indicators – by the same formulas (4)
respectively, but with the upper limits at t → +∞ instead of the lower ones

ρ̂ ◦
b (f) ≡ lim

t→+∞
inf

L∈AutRn
t−1P̂b(f, t, L), ρ̂ •

b (f) ≡ inf
L∈AutRn

lim
t→+∞

t−1P̂b(f, t, L). (5)
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The indicators ρ̌ ◦
b (f) and ρ̂ •

b (f) turn out to be respectively the smallest and the largest of four
ball wandering indicators (4), (5) of system (1) introduced in Definition 1.

Other functionals are also known that are responsible for similar properties of solutions not
related to their norm (see, for example, [1–3]): the oscillation or the oriented, non-oriented, fre-
quency and flat rotation, as well as the rotation of the given rank. In addition to the ball indicators,
we can also consider the spherical or the radial ones [4].

The total wandering of a differential system defined below (near its zero solution, which we will
not mention further for brevity) remotely resembles Lyapunov stability. In contrast to stability,
wandering does not mean that all solutions that start close enough to zero remain forever in its
given neighborhood, but that their average (in time) angular velocity is positive and even separated
from zero (uniformly in all these solutions at once). However, in the nonlinear case, the matter
is complicated by the fact that the solutions mentioned may not be defined on the entire time
semiaxis. The situation is similar with complete nonwandering.

Definition 2. We say that system (1) has:

1) complete wandering if there exist ε > 0 and T ∈ R+ such that for each L ∈ AutRn and t > T
the estimate holds

P̌(f, t, L) > εt;

2) complete nonwandering if for any ε > 0 there exist T ∈ R+ and L ∈ AutRn, that for every
t > T the estimate holds

P̂(f, t, L) < εt.

Whether a system is completely wandering or nonwandering is uniquely determined by the signs
of its corresponding ball wandering indicators.

Theorem 1. The complete wandering and the complete nonwandering of system (1) are equivalent
to the positiveness of its lower ball wandering indicator

ρ̌ ◦
b (f) > 0

and, respectively, to the equality to zero of its upper ball wandering indicator

ρ̂ •
b (f) = 0.

All the ball wandering indicators of a system coincide with the corresponding indicators of the
system of its first approximation (which are calculated much easier, since in the case of a linear
system in formulas (3) the lower and upper limits at x0 → 0 can be replaced by the exact lower
and upper bounds over all x0 ̸= 0, respectively).

Theorem 2. For any system (1) and system (2) of its first approximation, the equalities hold

ρ̃ ∗
b (f) = ρ̃ ∗

b (f′), ˜=ˇ,ˆ, ∗ = ◦, •.

Thus, both the complete wandering and the complete nonwandering of a nonlinear system are
uniquely determined by the system of its first approximation.

Theorem 3. The complete wandering and the complete nonwandering of system (1) are equivalent
to the positiveness of the indicator of system (2) of its first approximation

ρ̌ ◦
b (f′) > 0

and, accordingly, to the equality to zero of the indicator of system (2)

ρ̂ •
b (f′) = 0.
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Definition 3 ([4]). For a system (1) and for its nonzero solution x ∈ S∗(f) defined on the whole
semiaxis R+, we define:

(a) lower weak and strong wandering indicators – by the formulas

ρ̌ ◦(x) ≡ lim
t→+∞

inf
L∈AutRn

t−1P(t, Lx), ρ̌ •(x) ≡ inf
L∈AutRn

lim
t→+∞

t−1P(t, Lx); (6)

(b) upper weak and strong wandering indicators – by the same formulas (6) respectively, but with
the upper limits at t → +∞ instead of the lower ones

ρ̂ ◦(x) ≡ lim
t→+∞

inf
L∈AutRn

t−1P(t, Lx), ρ̂ •(x) ≡ inf
L∈AutRn

lim
t→+∞

t−1P(t, Lx); (7)

(c) exact or absolute varieties of indicators (4)–(7) that arise when the corresponding values of
the lower and upper indicators or, respectively, weak and strong ones coincide: in the first
case, we will omit the checkmark and the cap in their designation, and in the second one –
an empty and full circle.

Surprisingly, the presence of a complete wandering system does not mean that it has at least one
solution with a positive wandering indicator, and vice versa, the presence of complete nonwandering
system does not mean that it has at least one solution with a zero wandering indicator.

Theorem 4. For n = 2, there exist two Lyapunov stable systems (1), which, like all their nonzero
solutions defined on the entire semiaxis R+, have exact absolute wandering indicators: one of these
systems has complete wandering, is periodic, and satisfies the conditions

ρb(f) = 1 > 0 = ρ(x), x ∈ S∗(f),

while the other system has complete nonwandering and satisfies the conditions

ρb(f) = 0 < 1 = ρ(x), x ∈ S∗(f).
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We consider the differential equation

y′′′ = α0p(t)y| ln |y||σ, (1)

where α0 ∈ {−1, 1}, σ ∈ R, p : [a, ω[→ ]0 < +∞[ is a continuous function, −∞ < a < ω ≤ +∞1.
The solution y of equation (1), given and different from zero on the interval [ty, ω[⊂ [a, ω[ , is

called Pω(λ0)-solution if it satisfies the following conditions:

lim
t↑ω

y(k)(t) =

{
if 0,

if ±∞
(k = 0, 1, 2), lim

t↑ω

(y′′(t))2

y′′′(t)y′(t)
= λ0.

In [6], for equation (1) the conditions for the existence of a Pω(λ0)-solution were established
in the non-singular case, when λ0 ∈ R \

{
0, 12 , 1

}
, asymptotic representations were also obtained

for such solutions and their derivatives up to the second order inclusive. At the same time, the
question of the number of solutions with the found asymptotic representations was also clarified.

In [5] Shinkarenko V., Sharay N. for the differential equation (1) investigated questions about
the existence and asymptotics of the so-called Pω(Y0, λ0)– solutions at λ0 = +∞.

The purpose of this work is to establish necessary and sufficient conditions for the existence of
y for the differential equation (1) Pω(

1
2)-solutions, as well as asymptotic representations at t ↑ ω

for all such solutions and their derivatives up to the second order inclusive.
In special cases, using the results from the work of Evtukhov V. [2, Ch. 3, § 10, pp. 142–144]

it follows a corollary on the asymptotic properties of Pω(
1
2)-solutions of equation (1). To describe

them, we need the following auxiliary notation

πω(t) =

{
t, if ω = +∞,

t− ω, if ω < +∞.

Lemma. For each Pω(
1
2)-solutions of the differential equation (1) when t ↑ ω we have the asymptotic

relations
y′(t) = o

( y(t)

πω(t)

)
, y′′(t) ∼ − 1

πω(t)
y′(t), y′′′(t) ∼ 2!

[πω(t)]2
y′(t).

1We assume that a > 1 at ω = +∞ and ω − a < 1 at ω < +∞.
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Using this result and the work of Evtukhov V. and Samoylenko A. [3], the following result is
established.

To formulate the main result, we need the auxiliary functions

JA(t) =

t∫
A

πω(τ)p(τ) dτ, IB(t) =

t∫
B

JA(τ) dτ,

where

A =


a, if

ω∫
a

|πω(τ)|p(τ) dτ = +∞,

ω, if
ω∫

a

|πω(τ)|p(τ) dτ < +∞,

B =


a,

ω∫
a

|JA(τ)| dτ = +∞,

ω,

ω∫
a

|JA(τ)| dτ < +∞.

Theorem 1. Let σ ̸= 1. Then, for the existence of Pω(
1
2)-solutions of the differential equation (1)

it is necessary and sufficient that the conditions

lim
t↑ω

πω(t)J
′
A(t)

JA(t)
= −1, lim

t↑ω
|IB(t)|

1
1−σ = +∞, lim

t↑ω
πω(t)JA(t)|IB(t)|

σ
1−σ = 0, (2)

hold. Moreover, for each such solution, when t ↑ ω the asymptotic representations

ln |y(t)| = ν0

∣∣∣1− σ

2
IB(t)

∣∣∣ 1
1−σ

[1 + o(1)], (3)

y′(t)

y(t)
= −α0JA(t)

2

∣∣∣1− σ

2
IB(t)

∣∣∣ σ
1−σ

[1 + o(1)], (4)

y′′(t)

y(t)
=

α0

2

JA(t)

πω(t)

∣∣∣1− σ

2
IB(t)

∣∣∣ σ
1−σ

[1 + o(1)] (5)

hold, where
ν0 = −α0 sign[(1− σ)IB(t)].

Furthermore, if conditions (2) are met, the differential equation (1) in the case when ω = +∞ has
a one-parameter family of solutions with representations (3)–(5), if σ < 1, and in the case when
ω < ∞ solutions there is a two-parameter family if σ > 1 and three-parameter family if σ < 1.

Remark 1. It is also shown that under conditions (2) it can be proved that for ω = +∞ and
σ > 1 the differential equation (1) has a unique solution that admits for t ↑ ω the asymptotic
representations (3)–(5).

Remark 2. When checking the fulfillment of (2), we can take into account the fact that by virtue
of the first of them the second and third ones are equivalent to the conditions

lim
t↑ω

∣∣∣∣
t∫

B

π2
ω(τ)p(τ) dτ

∣∣∣∣ 1
1−σ

= +∞, lim
t↑ω

π3
ω(t)p(t)

∣∣∣∣
t∫

B

π2
ω(τ)p(τ) dτ

∣∣∣∣ σ
1−σ

= 0.

In conclusion, we pay attention to the fact that Theorem 1 covers the case σ = 0, i.e. when
equation (1) is a linear differential equation of the form

y′′′ = α0p(t)y. (6)

For this equation, by virtue of Theorem 1, the following assertion holds.
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Corollary. For the existence of Pω(
1
2)-solutions of (6), it is necessary and sufficient that the

conditions
lim
t↑ω

πω(t)J
′
A(t)

JA(t)
= −1, lim

t↑ω
|IB(t)| = +∞, lim

t↑ω
πω(t)JA(t) = 0 (7)

hold. Moreover, for each such solution, t ↑ ω the asymptotic representations

ln |y(t)| = ν0

∣∣∣1− σ

2
IB(t)

∣∣∣[1 + o(1)], (8)

y′(t)

y(t)
= −α0JA(t)

2
[1 + o(1)], (9)

y′′(t)

y(t)
=

α0

2

JA(t)

πω(t)
[1 + o(1)] (10)

hold, where
ν0 = −α0 sign[(1− σ)IB(t)].

Furthermore, when conditions (7) are met, the differential equation (6) has a one-parameter family
of solutions, and in the case ω = +∞, a two-parameter family of solutions with representations
(8)–(10).

The obtained asymptotics are consistent with the already known results for linear differential
equations (see [4]).
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In the paper, the nonlinear controlled functional integral equation corresponding to the quasi-
linear neutral functional differential equation with two types controls is constructed. A structure
and properties of the integral kernel are established. Equivalence of the functional integral equa-
tion and the neutral functional differential equation is established also. We note that theorems
formulated below play a principal role in the study of well-posedness of Cauchy’s problem for the
quasi-linear neutral functional differential equations. In details, about of this investigations for the
quasi-linear neutral functional differential equations without control are given in [1-3].

Let Rn
x be the n-dimensional vector space of points x = (x1, . . . , xn)T , where T is the sign of

transposition; let I = [t0, t1] be a fixed interval and let τ > 0 be a given number, with t0+τ < t1; the
n × n-dimensional matrix-function A(t, x, y, v) and the n-dimensional vector-function f(t, x, y, u)
are continuous and bounded on the set I × Rn

x × Rn
x × Rm

v and I × Rn
x × Rn

x × Rr
u, respectively,

and satisfy Lipschptz’s condition with respect to (x, y, v) and (x, y, u), i.e. there exist LA > 0 and
Lf > 0 such that∣∣A(t, x1, y1, v1)−A(t, x2, y2, v2)

∣∣ ≤ LA

(
|x1 − x2|+ |y1 − y2|+ |v1 − v2|

)
∀ t ∈ I, (xi, yi, vi) ∈ Rn

x × Rn
x × Rm

v , i = 1, 2,

and ∣∣f(t, x1, y1, u1)− f(t, x2, y2, u2)
∣∣ ≤ Lf

(
|x1 − x2|+ |y1 − y2|+ |u1 − u2|

)
∀ t ∈ I, (xi, yi, ui) ∈ Rn

x × Rn
x × Rr

u, i = 1, 2.

Further, denote by V and Ω the sets of piecewise-continuous control functions v(t) ∈ Rm
v with

finitely many discontinuous of the first kind and bounded measurable control functions u(t) ∈ Rr
u,

respectively, equipped with the norm

∥v∥ = sup
{
|v(t)| : t ∈ I

} (
∥u∥ = sup

{
|u(t)| : t ∈ I

})
;

φ(t) ∈ Rn
x, t ∈ [t0 − τ, t0] is a given continuously differentiable initial function; x0 ∈ Rn

x is a given
initial vector.

Let us consider the quasi-linear controlled neutral functional differential equation

ẋ(t) = A
(
t, x(t), x(t− τ), v(t)

)
ẋ(t− τ) + f

(
t, x(t), x(t− τ), u(t)

)
, t ∈ I (1)

with the initial condition
x(t) = φ(t), t ∈ [τ̂ , t0), x(t0) = x0, (2)

where τ̂ = t0 − τ .
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Definition 1. Let w = (v(t), u(t)) ∈ W = V × Ω. A function x(t) = x(t;w), t ∈ I1 = [τ̂ , t1], is
called a solution of equation (1) with the initial condition (2), if it satisfies condition (2) and is
absolutely continuous on the interval I and satisfies equation (1) almost everywhere on I.

Theorem 1. For any w ∈ W there exists the unique solution x(t) = x(t;w), t ∈ I1.

Theorem 2. The solution x(t), t ∈ I1 of problem (1), (2) can be represented on the interval I in
the following form

x(t) = x0 +

t0∫
t0−τ

Y
(
ξ + τ ; t, x( · ), v( · )

)
A
(
ξ + τ, x(ξ + τ), x(ξ), v(ξ + τ)

)
φ̇(ξ) dξ

+

t∫
t0

Y
(
ξ; t, x( · ), v( · )

)
f
(
ξ, x(ξ), x(ξ − τ), u(ξ)

)
dξ,

where
x(ξ) = φ(ξ), ξ ∈ [τ̂ , t0)

and Y (ξ, t, x( · ), v( · )) is the matrix-function satisfying the difference equation

Y (ξ; t, x( · ), v( · )) = E + Y
(
ξ + τ ; t, x( · ), v( · )

)
·A

(
ξ + τ, x(ξ + τ), x(ξ), v(ξ + τ)

)
(3)

on (t0, t) for any fixed t ∈ (t0, t1] and the condition

Y (ξ; t, x( · ), v( · )) =

{
E, ξ = t,

Θ, ξ > t.

Here, E is the identity matrix and Θ is the zero matrix.

The expression

y(t) = x0 +

t0+τ∫
t0

Y
(
ξ; t, y( · ), v( · )

)
A
(
ξ, y(ξ), y(ξ − τ), v(ξ)

)
φ̇(ξ − τ) dξ

+

t∫
t0

Y
(
ξ; t, y( · ), v( · )

)
f
(
ξ, y(ξ), y(ξ − τ), u(ξ)

)
dξ (4)

with the condition
y(ξ) = φ(ξ), ξ ∈ [τ̂ , t0) (5)

is called the functional integral equation corresponding to problem (1), (2).

Definition 2. Let w ∈ W . A function y(t) = y(t;w), t ∈ I1, is called a solution of equation
(4) with condition (5), if it satisfies condition (5) and is continuous on the interval I and satisfies
equation (4) everywhere on I.

Theorem 3. Let t ∈ (t0, t1] be a fixed point. The solution of the difference equation (3) can be
represented by the following formula

Y (ξ; t, x( · ), v( · )) = χ(ξ; t)E +
k∑

i=1

χ(ξ + iτ ; t)
1∏

q=i

A
(
ξ + qτ, x(ξ + qτ), x(ξ + (q − 1)τ), v(ξ + qτ)

)
,
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where

χ(ξ; t) =

{
1, t0 ≤ ξ ≤ t,

0, ξ > t

and k is a minimal natural number satisfying the condition

t1 − kτ < t0.

Theorem 4. Let s1, s2 ∈ (t0, t1] and 0 < s2 − s1 < τ . Let y(t), t ∈ I be a continuous function.
Then there exist subintervals I1(s1, s2) ⊂ I and I2(s1, s2) ⊂ I such thatY

(
ξ; s1, y( · ), v( · )

)
= Y

(
ξ; s2, y( · ), v( · )

)
, ξ ∈ I1(s1; s2),

Y
(
ξ; s1, y( · ), v( · )

)
̸= Y

(
ξ; s2, y( · ), v( · )

)
, ξ ∈ I2(s1; s2),

with
lim

s2−s1→0
mes I2(s1, s2) → 0.

Theorem 5. Let y(t) ∈ Rn, t ∈ [τ̂ , t1] be a given piecewise-continuous function, with y(ξ) = φ(ξ),
ξ ∈ [τ̂ , t0); v(t) ∈ V and u(t) ∈ Ω. Then the function

z(t) = x0 +

t0+τ∫
t0

Y
(
ξ; t, y( · ), v( · )

)
A
(
ξ, y(ξ), y(ξ − τ), v(ξ)

)
φ̇(ξ − τ) dξ

+

t∫
t0

Y
(
ξ; t, y( · ), v( · )

)
f
(
ξ, y(ξ), y(ξ − τ), u(ξ)

)
dξ

is continuous on the interval I.

Theorem 6. Let yi(t) ∈ Rn
x, t ∈ I, i = 1, 2 be continuous functions and vi(t) ∈ V , i = 1, 2. Then

for a fixed (ξ, t) ∈ I2,∣∣∣Y (
ξ; t, y1( · ), v1( · )

)
− Y

(
ξ; t, y2( · ), v2( · )

)∣∣∣
≤ LA

k∑
i=1

χ(ξ + iτ ; t)∥A∥i−1

( 1∑
q=i

[∣∣y1(ξ + qτ)− y2(ξ + qτ)
∣∣

+
∣∣y1(ξ + (q − 1)τ)− y2(ξ + (q − 1)τ)

∣∣+ ∣∣v1(ξ + qτ)− v2(ξ + qτ)
∣∣]),

where
∥A∥ = sup

{
|A(t, x, y, v)| : (t, x, y, v) ∈ I ×Rn

x ×Rn
x ×Rm

v

}
.

Theorem 7. Let yi(t) ∈ Rn
x, t ∈ I, i = 0, 1, . . . be continuous functions and vi(t) ∈ V , i = 0, 1, . . . ,

with
∥yi − y0∥ → 0, ∥vi − v0∥ → 0,

Then
t∫

t0

Y
(
ξ; t, yi( · ), vi( · )

)
dξ −→

t∫
t0

Y
(
ξ; t, y0( · ), v0( · )

)
dξ

uniformly for t ∈ I.
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Theorem 8. The functional integral equation (4) with condition (5) has the unique solution.

Theorem 9. The quasi-linear neutral functional differential equation (1) and the functional integral
equations (4) are equivalent.

Remark. The analogous theorems for the case, where A(t, x, y, v) ≡ A(t) and functional integral
equation (3) depends on the one control function, are proved in [1, 3, 4] and [2], respectively.

Conclusion
On the basis of the given theorems, it can be investigated continuous dependence of a solution of
the quasi-linear controlled neutral functional differential equation (1) with respect to perturbations
of the initial data. In future work the case, where a controlled functional integral equation contains
several variable delays, will be considered.
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We consider the following system of differential equations with turning point (SSPDE):

εY ′(x, ε)−A(x, ε)Y (x, ε) = H(x), (0.1)

where
A(x, ε) = A0(x) + εA1(x),

is a known matrix,

A0(x) =

 0 0 0
0 0 1

−b(x) −a(x) 0

 , A1 =

0 1 0
0 0 0
0 0 0

 ,

when ε → 0, x ∈ [−l, l], Y (x, ε) ≡ Yk(x, ε) = colomn(y1(x, ε), y2(x, ε), y3(x, ε)) is an unknown
vector function, H(x) = colomn(0, 0, h(x)) is a given vector function.

The scalar reduced equation for this matrix will be

xã(x)ω′(x) + b(x)ω(x) = h(x).

The characteristic equation that corresponds to the SP system (0.1) is as follows:

A(x, 0)− λE| =

∣∣∣∣∣∣
−λ 0 0
0 −λ 1

−b(x) −a(x) −λ

∣∣∣∣∣∣ = −λ3 − xã(x)λ = 0.

The roots of this equation are
λ1 = 0, λ2,3= ±

√
xã(x) .

The purpose of this work is to construct uniform asymptotic of a solution for a given SSPDE
with a stable turning point of the first kind.

1 Regularization of singularly perturbed systems
of differential equations

In order to save all essential singular functions that appear in the solution of system (0.1) due to
the special point ε = 0, a regularizing variable is introduced t = ε−p · φ(x), where exponent p and
regularizing function φ(x) are to be determined.
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Instead of Yk(x, ε) function Ỹk(x, t, ε) transformation function will be studied, also the trans-
formation will be performed in such a way that the following identity is true

Ỹ (x, t, ε)
∣∣∣
t=ε−pφ(x)

≡ Y (x, ε),

which is the necessary condition for a suggested method. The vector equation (0.1) can be written
as

L̃εỸk(x, t, ε) ≡ µφ′ ∂Ỹ (x, t, ε)

∂t
+ µ3

∂ỹ(x, t, ε)

∂x
−A(x, ε)Ỹk(x, t, ε) = H(x). (1.1)

Asymptotic forms of solutions for equation (1.1) are constructed in the form of the series

Ỹk(x, t, ε) =
2∑

i=1

Di(x, t, ε) + f(x, ε)ν(t) + εγg(x, ε)ν ′(t) + ω(x, ε),

2∑
i=1

Di(x, t, ε) =

ε
s1αk1(x, ε)

εs2αk2(x, ε)

εs3αk3(x, ε)

Ui(t) + εγ

ε
k1βk1(x, ε)

εk2βk2(x, ε)

εk3βk3(x, ε)

Ui
′(t),

where U1(t), U2(t) are the Airy–Langer functions [3] and αik(x, ε), βik(x, ε), fk(x, ε), gk(x, ε),
ωk(x, ε), k = 1, 3 are analytic functions with reference to a small parameter and are infinitely
differentiable functions of variable x ∈ [−l; l] which are still to be determined.

First of all, the analysis how transformation operator L̃ε operates on vector function Dk(x, t, ε)
will be performed, and then the obtained result will be utilized in the homogeneous transformation
equation (0.1). The following equation is obtained

L̃ε(αik(x, ε)Ui(t) + εγβik(x, ε)U
′
i(t))

= ε1−pαik(x, ε)φ
′(x)U ′

i(t)− ε1+γ−2pβik(x, ε)φ
′(x)φ(x)Ui(t)−A(x, ε)αk(x, ε)Ui(t)

− εγA(x, ε)βik(x, ε)U
′
i(t) + εα′

ik(x)Ui(t) + ε1+γβ′k(x)U
′
i(t) = 0.

Then, after equating corresponding coefficients of essential singular functions Uk(t), k = 1, 2
and their derivatives, two following vector equations are obtained:

U ′
i(t) : ε

1−pαik(x, ε)φ
′(x)− εγ

[
A0(x) + εA1

]
βik(x, ε) = −ε1+γβ′ik(x, ε), (1.2)

Ui(t) : −ε1+γ−2pβik(x, ε)φ(x)φ
′(x)−

[
A0(x) + εA1

]
αik(x, ε) = −εα′

ik(x, ε). (1.3)

2 Construction of formal solutions of a homogeneous
transformation system

The unknown coefficients of the vector equations (1.2) and (1.3) are sought as following vector
function series (i = 1, 2):

αik(x, ε) =
+∞∑
r=0

µrαikr(x), βik(x, ε) =
+∞∑
r=0

µrβikr(x).

To determine vector function components αikr = colomn(αi1r(x), αi2r(x), αi3r(x)) and βikr(x) =
colomn(βi1r(x), βi2r(x), βi3r(x)), the following recurrent systems of equations are obtained:

Φ(x)Zk0(x) = 0, r = 0, 1, 2,

Φ(x)Zkr(x) = FZk(r−3)(x), r ≥ 3.
(2.1)
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At the moment, the regularizing function has not yet been defined; therefore, it will be defined
as a solution of the problem

φ′2φ(x) = x, φ(0) = 0,

which is the following function
φ(x) = x.

The regularizing function of such kind has been considered in [3, 5].
Due to such a choice of the regularizing variable φ(x), there is a nontrivial solution of the

homogeneous system Φ(x)Zkr(x) = 0, r = 0, 2, that is

Zikr(x) = colomn
(
0, βi3r(x),−βi2r(x), 0, βi2r(x), βi3r(x)

)
,

where βksr(x), i = 1, 2, s = 2, 3 are arbitrary up to some point and sufficiently smooth function at
x ∈ [0; l].

Solving systems of recurrent equations at the third step, i.e., when r = 3, and taking into
account the already obtained solution (2.1), the following systems of algebraic equations in αkr(x)
and βkr(x) are obtained 

αi13(x) = βi20(x)− β′i10(x) ≡ βi20(x),

αi23(x)− βi33(x) = −β′i20(x),
αi33(x)− βi13(x) + βi23(x) = −β′i30(x),

(2.2)

and 
xβi13(x) = −α′

i10(x) + αi20(x) ≡ αi20(x) ≡ βi30(x),

xβi23(x) + αi33(x) = α′
i20(x) ≡ (βi30(x))

′,

xβi33(x) + αi13(x) + αi23(x) = α′
i30(x) ≡ [−xβi20(x)]′.

(2.3)

Taking into account the fact that the functions are arbitrary, βis0(x) = β0is0 · β̂is0(x), i = 1, 2,
s = 2, 3, where β0is0(x) are an arbitrary constants, β̂is0(x) is a partial and sufficiently smooth for all
x ∈ [−l; l] solutions of homogeneous equations. This definition of vector functions Zik0(x) implies
that there are following solutions of inhomogeneous systems of algebraic equations (2.2) and (2.3):

Zik3(x) = colomn
(
zi13, zi23, zi33, zi43, zi53, zi63

)
,

zi13 = βi20(x), zi23 = −β′i20(x) + βi33(x), zi33 = −β′i30(x)− βi23(x) +
βi30
x

, zi43 =
βi20(x)

x
,

zi53 = βi21(x), zi63 = βi31(x),

where βi21(x) and βi31(x) are arbitrary up to some point and sufficiently smooth functions for all
x ∈ [−l; l].

Thus, gradual solving of systems of equations (2.2) and (2.3) gives two formal solutions of the
transformation vector equation (0.1)

Dik(x, ε
− 2

3φ(x), ε) =
∞∑
r=0

εr
[
αikr(x)Ui(ε

− 2
3φ(x)) + ε

1
3βikr(x, ε)U

′
i(ε

− 2
3φ(x))

]
.

The third formal solution of the homogeneous vector equation (0.1) is then constructed as a
series

ω(x, ε) ≡
∞∑
r=0

εrωr(x) ≡ colon
( ∞∑

r=0

εrω1r(x),

∞∑
r=0

εrω2r(x),

∞∑
r=0

εrω3r(x)
)
. (2.4)
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Substituting solution (2.4) into equation (0.1), the following recurrent system of differential
equations can be obtained:

A0(x)ω0(x) = 0,

Ar(x)ωr(x) = −A1(x)ω(r−1)(x)− ω′
(r−1)(x), r ≥ 1.

Then, solving these systems step by step, the following zero approximation can be constructed

ω0(x) = colomn(ω10(x), ω20(x), ω30(x)) ≡ colomn(ω0
10 · x,−ω0

10, 0),

that has only one arbitrary constant ω0
01.

3 Construction of formal partial solutions
Similarly to the previous steps, in order to construct asymptotic forms of partial solutions of the
inhomogeneous transformation vector equation (0.1), let us analyze how transformation operator
operates on an element from the space of non-resonant solutions

f(x, ε)ψ(t) + εγg(x, ε)ψ′(t) + ω(x, ε).

Consequently, the following systems are obtained

ψ′(t) : fk(x, ε)−
[
A0(x) + µ3A1

]
gk(x, ε) = −µ3g′k(x, ε), (3.1)

ψ(t) : xgk(x, ε) +
[
A0(x) + µ3A1

]
fk(x, ε) = µ3f ′k(x, ε), (3.2)

µ3ω ′(x, ε)−
[
A0(x) + µ3A1

]
ω(x, ε) + µ2gk(x, ε) = H(x). (3.3)

In order to have smooth solutions of systems (3.1)–(3.3), the asymptotic forms of the solutions
are constructed as series

fk(x, ε) =
+∞∑
r=−2

µrfr(x), gk(x, ε) =
+∞∑
r=−2

µrgr(x), ω(x, ε) =
+∞∑
r=0

µrωr(x).

To determine components of the vector functions fkr = colomn(f1r(x), f2r(x), f3r(x)) and
gkr(x) = colomn(g1r(x), g2r(x), g3r(x)), the following recurrent systems of equations are obtained:

Φ(x)Zpart.
k0 (x) = 0, r = −2,−1, 0,

Φ(x)Zpart.
kr (x) = −Zpart.

k(r−3)(x), r ≥ 1.

Then, to determine the vector functions ωr(x), the following recurrent systems of equations are
obtained as well

−A0(x)ωkr(x) = H(x)− gk(r−2)(x), r = 0,

−A0(x)ωkr(x) = −gk(r−2)(x), r = 1, 2,

ω ′
k(r−3)(x)−A0(x)ωkr(x) = −gk(r−3)(x) +A1ωk(r−3)(x), r ≥ 3,

where ωr(x) = colomn(ω1r(x), ω2r(x), ω3r(x)) is an unknown vector function. Doing further itera-
tions, functions ωr(x), fr(x), gr(x), which are sufficiently smooth in the whole domain, are obtained.
Therefore, the partial solution of the transformation vector equation (0.1) is then defined as the
series

Ỹ part.
k (x, t, ε) =

∞∑
r=−2

µr
[
fkr(x)ν(t) + µgkr(x)ν

′(t)
]
+

∞∑
r=0

µrωkr(x).
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4 Conclusions
Thus, the transformation vector equation (0.1) has three formal solutions in form of the series

Ỹ (x, t, ε) =

∞∑
r=0

εr
[ 2∑

i=1

[
αikr(x)Ui(ε

− 2
3 · x) + ε

1
3βkr(x)

dUi(ε
2
3 · x)

d(ε−
2
3 · x)

]]

+

∞∑
r=−2

εr
[
fkr(x)ν(ε

2
3 · x) + ε

1
3 gkr(x)

dν(ε−
2
3 · x)

d(ε−
2
3 · x)

]
+

∞∑
r=0

εrωkr(x).

5 Algorithm for constructing the asymptotics of a solution
of the system

Let us write the main result of this paper in the following algorithm:
Step I. An extension of the singularly perturbed problem. In a singularly perturbed system with a
turning point next to an independent one variable x introduces a new vector-variable t = ε−p ·φ(x).
Then instead of the wanted one vector-function Y (x, ε) a new “extended vector-function” Ỹ (x, t, ε)
is studied. The expansion is carried out in such a way that the condition as in regularization
method

Ỹ (x, t, ε)
∣∣∣
t=ε−p·φ(x)

≡ Y (x, ε).

p and φ(x) are determined for each specific case. There is a transition from a problem with one
variable to a problem with two variables t and x.
Step II. The space of resonance-free solutions. For regularization, a specific space of functions is
introduced, this space is called the space of resonance-free solutions and for each specific problem
this space has its own specificity

2∑
k=1

Dk(x, t, ε), fk(x, ε)ψ(t), ε
γgk(x, ε)ψ

′(t), ωk(x, ε).

Step III. Regularization of a singularly perturbed problem. The extended problem is studied in
the space of resonance-free solutions and is reduced to an equation in which the small parameter
ε > 0 enters regularly.
Step IV. The formalism of constructing a solution to the problem. Since the extended problem is
regularly perturbed with respect to the small one parameter in the space of resonance-free solutions,
then we will look for the solution of the problem in the form of a series

Ỹ (x, t, µ) =
∞∑

r=−2

µrY (x), (5.1)

where µ = 3
√
ε is a small parameter.

We start the construction of the asymptotic series with negative powers of a small parameter in
order to obtain uniform asymptotics intersection of the SSPDE. The right part of the system will
have a break of the second kind at the turning point. Therefore, in general, it will not belong set of
values of the main extended operator L̃ε. By substituting series (5.1) in system (1.1), to determine
the coefficients of this series, we will get some system of pointwise recurrent equations with initial
or boundary conditions.
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Step V. Construction of formal solutions of homogeneous extended system. Those obtained
in the previous point are recurrent the equation for determining the coefficients of series (5.1) is
partial differential equations with point boundary conditions. We will show that this system of
equations is asymptotically correct in the space of resonance-free solutions Dk. At this stage, the
theory of existence is developed of the iterative equation of the form

Φ(x) · Zkr(x) = F · Zkr(x),

where Φ(x) is the matrix of system (1.1), Zkr(x) is a column vector composed of analytic functions
θ1(x, ε). And the first members are being built of the asymptotic solution of the homogeneous
problem under consideration.
Step VI. Construction of formal inhomogeneous solutions extended system. In this section, a
function is being built for the inhomogeneous problem using a recurrent equation

Φ(x) · Zkr(x) = F · Zkr(x),

where Φ(x) is the matrix of system (1.1), Zkr(x) is a column vector composed of analytic functions
θ2(x, ε).
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The extended abstract concerns the parameter-dependent periodic problem

u′′ = p(t)u− h(t)|u|λ sgnu+ µf(t); u(0) = u(ω), u′(0) = u′(ω), (1)

where p, h, f ∈ L([0, ω]), h ≥ 0 a. e. on [0, ω], λ > 1, and µ ∈ R is a parameter. By a solution
to problem (1), as usual, we understand a function u : [0, ω] → R which is absolutely continuous
together with its first derivative, satisfies the given equation almost everywhere, and meets the
periodic conditions. The text is based on the paper [3].

We first note that the differential equation in (1) with λ = 3 is derived, for example, when
approximating non-linearities in the equations of motion of the oscillators in Figs. 1 and 2.

Figure 1. Forced steel beam deflected toward the two magnets1.

Consider a forced undamped oscillator consisting of a mass body of weight m and a linear
spring of characteristic k and non-deformed length ℓ (see Fig. 2). Assume that the mass body
moves horizontally without any friction and the spring’s base point B oscillates vertically, i.e., d is
a positive ω-periodic function. This is a system with a single degree of freedom, described by the
coordinate x, whose equation of motion is of the form

x′′ =
k

m
x

(
ℓ√

d2(t) + x2
− 1

)
+

F (t)

m
. (2)

A classical approach to deriving Duffing equation is to approximate the non-linearity in (2) by a
third-degree Taylor polynomial centred at 0. We thus get the equation

x′′ =
k(ℓ− d(t))

md(t)
x− kℓ

2md3(t)
x3 +

F (t)

m
, (3)

1A figure is adopt from http://www.scholarpedia.org/article/Duffing_oscillator.
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B

d(t)

0 ~F (t) x

Figure 2. Forced undamped mass-spring oscillator with the so-called geometric non-
linearity.

which is a particular case of the differential equation in (1). It is worth mentioning that the results
below can be applied, for instance, to the forcing terms

F (t) := −f0, F (t) := A
(
sin

2πt

ω
− 1

2

)
,

where f0, A > 0 are parameters.
To formulate our results, we need the following definitions.

Definition 1 ([2, Definitions 0.1 and 15.1, Proposition 15.2]). We say that a function p ∈ L([0, ω])
belongs to the set V−(ω) if, for any function u ∈ AC 1([0, ω]) satisfying

u′′(t) ≥ p(t)u(t) for a. e. t ∈ [0, ω], u(0) = u(ω), u′(0) ≥ u′(ω),

the inequality u(t) ≤ 0 holds for t ∈ [0, ω].

Remark 1. Let ω > 0. If p(t) := p0 for t ∈ [0, ω], then one can show by direct calculation that
p ∈ V−(ω) if and only if p0 > 0. For non-constant functions p ∈ L([0, ω]), efficient conditions
guaranteeing the inclusion p ∈ V−(ω) are provided in [2] (see also [1, 4]).

Definition 2 ([2, Definition 16.1]). Let p, f ∈ L([0, ω]). We say that a pair (p, f) belongs to the
set U(ω), if the problem

u′′ = p(t)u+ f(t); u(0) = u(ω), u′(0) = u′(ω)

has a unique solution which is positive.

Remark 2. Let p ∈ V−(ω). It follows from [2, Theorem 16.2] that (p, f) ∈ U(ω) provided that

ω∫
0

[f(s)]− ds > e
ω
4

ω∫
0

[p(s)]+ ds
ω∫

0

[f(s)]+ ds. (4)

In particular, if
f(t) ≤ 0 for a. e. t ∈ [0, ω], f(t) ̸≡ 0, (5)

then (p, f) ∈ U(ω).
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In what follows, we discuss the existence/non-existence as well as the exact multiplicity of
positive solutions to problem (1) depending on the choice of the parameter µ provided that p ∈
V−(ω). Let us show, as a motivation, what happens in the autonomous case of (1). Hence, consider
the equation

x′′ = ax− b|x|λ sgnx− µ. (6)

In view of Remark 1 and the hypothesis h ≥ 0 a.e. on [0, ω], we assume that a, b > 0. By direct
calculation, the phase portraits of equation (6) can be elaborated depending on the choice of the
parameter µ ∈ R (see, Fig. 3) and, thus, one can prove the following proposition concerning the
positive periodic solutions to equation (6).

µ = −1 µ = 0 µ = 1

µ = 2 µ = 3

Figure 3. Phase portraits of equation (6) with a = 3, b = 1, and λ = 3.

Proposition 1. Let λ > 1 and a, b > 0. Then, the following conclusions hold:

(1) If µ ≤ 0, then equation (6) has a unique positive equilibrium (center) and non-constant
positive periodic solutions with different periods.

(2) If 0 < µ < (λ−1)a
λ ( a

λb)
1

λ−1 , then equation (6) possesses exactly two positive equilibria x2 > x1
(x1 is a saddle and x2 is a center) and non-constant positive periodic solutions with different
periods. Moreover, all the non-constant positive periodic solutions are greater than x1 and
oscillate around x2.

(3) If µ = (λ−1)a
λ ( a

λb)
1

λ−1 , then equation (6) has a unique positive equilibrium (cusp) and no
non-constant positive periodic solution occurs.

(4) If µ > (λ−1)a
λ ( a

λb)
1

λ−1 , then equation (6) has no positive periodic solution.
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Proposition 1 shows that, if we consider µ as a bifurcation parameter, then, crossing the value
µ∗ = (λ−1)a

λ ( a
λb)

1
λ−1 , a bifurcation of positive periodic solutions to equation (6) occurs. In Fig. 3,

the critical value of the bifurcation parameter is µ∗ = 2.

Theorem 1 (Main result). Let λ > 1, p ∈ V−(ω), (p, f) ∈ U(ω),
ω∫
0

f(s) ds < 0, and

h(t) ≥ 0 for a. e. t ∈ [0, ω], h(t) ̸≡ 0. (7)

Then, there exists µ0 ∈ ]0,+∞[ such that the following conclusions hold:

(1) If µ = 0, then problem (1) has at least one positive solution and, for any couple of distinct
positive solutions u1, u2 to (1), the conditions

min
{
u1(t)− u2(t) : t ∈ [0, ω]

}
< 0, max

{
u1(t)− u2(t) : t ∈ [0, ω]

}
> 0

hold. If, moreover,

e
−1+

√
1+ω

ω∫
0

p(s) ds
(

− 1 +

√√√√√1 + ω

ω∫
0

p(s) ds

)
≤ 8

⌈λ⌉
, (8)

where ⌈ · ⌉ is the ceiling function, then problem (1) with µ = 0 has a unique positive solution.

(2) If 0 < µ < µ0, then problem (1) has solutions u1, u2 such that

u2(t) > u1(t) > 0 for t ∈ [0, ω]

and every non-negative solution u to problem (1) different from u1 and u2 satisfies

u(t) > u1(t) for t ∈ [0, ω],

min
{
u(t)− u2(t) : t ∈ [0, ω]

}
< 0, max

{
u(t)− u2(t) : t ∈ [0, ω]

}
> 0.

(3) If µ = µ0, then problem (1) has a unique positive solution.

(4) If µ > µ0, then problem (1) has no positive solution.

Open question. The following question remains open in Theorem 1: What happens in the case
of µ < 0?

We now provide lower and upper estimates of the number µ0 appearing in the conclusion of
Theorem 1.

Proposition 2. Let λ > 1, p ∈ V−(ω), h satisfy (7), and f be such that (4) holds. Then, the
number µ0 appearing in the conclusion of Theorem 1 satisfies

µ0 ≥
(λ− 1)[∆(p)]−

λ
λ−1

λ
[
λ

ω∫
0

h(s) ds
] 1
λ−1

ω∫
0

[f(s)]− ds

,

where ∆ is a number depending on the coefficient p only, and

µ0 <

(λ− 1)
[
e

ω
4

ω∫
0

[p(s)]+ ds ω∫
0

[p(s)]+ ds−
ω∫
0

[p(s)]− ds
] λ
λ−1

λ
[
λ

ω∫
0

h(s) ds
] 1
λ−1
[ ω∫
0

[f(s)]− ds− e
ω
4

ω∫
0

[p(s)]+ ds ω∫
0

[f(s)]+ ds
] .
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Remark 3. Let ω > 0 and put p(t) := a, h(t) := b, f(t) := −1 for t ∈ [0, ω], where a, b > 0.
Then, p ∈ V−(ω), h and f satisfy (7) and (5), respectively, and conclusions of Theorem 1 extend
conclusions (2)–(4) of Proposition 1 for the non-autonomous Duffing equations with a sign-changing
forcing term. Moreover, one can show that the number µ0 appearing in Proposition 2 satisfies(

1

cosh ω
√
a

2

) λ
λ−1 (λ− 1)a

λ

( a

λb

) 1
λ−1

< µ0 <
(
e

ω2a
4
) λ

λ−1
(λ− 1)a

λ

( a

λb

) 1
λ−1

;

compare it with the number appearing in Proposition 1.

If the forcing term f is non-positive, then Theorem 1 can be refined as follows.

Corollary. Let λ > 1, p ∈ V−(ω), and conditions (5), (7), and (8) be satisfied. Then, there exists
µ0 ∈ ]0,+∞[ such that the following conclusions hold:

(1) If µ = 0, then problem (1) has a unique positive solution.

(2) If 0 < µ < µ0, then problem (1) has exactly two positive solutions u1, u2 and these solutions
satisfy

u1(t) ̸= u2(t) for t ∈ [0, ω].

(3) If µ = µ0, then problem (1) has a unique positive solution.

(4) If µ > µ0, then problem (1) has no positive solution.
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1 Introduction
Let J = [0, 1], X = C(J)× R and ∥x∥ = max{|x(t)| : t ∈ J} be the norm in C(J).

We discuss the fractional boundary value problem
cDα

1−
cDβ

0+x(t) = f(t, x(t)), (1.1)

u(0) = cDβ
0+x(t)

∣∣∣
t=0

= cDβ
0+x(t)

∣∣∣
t=1

, (1.2)

where α, β ∈ (0, 1), f ∈ C(J × R), cD1− and cD0+ denote the right and the left Caputo fractional
derivatives.

Definition 1.1. We say that x : J → R is a solution of equation (1.1) if x, cDβ
0+x ∈ C(J) and x

satisfies (1.1) for t ∈ J . A solution x of (1.1) satisfying the boundary condition (1.2) is called a
solution of problem (1.1), (1.2).

Let x : J → R, γ ∈ (0, 1) and µ ∈ (0,∞). Then the left cDγ
0+x and the right cDγ

1−x Caputo
fractional derivatives of x of order γ are defined respectively by [2, 3]

cDγ
0+x(t) =

d

dt

t∫
0

(t− s)−γ

Γ(1− γ)
(x(s)− x(0))ds

and

cDγ
1−x(t) = − d

dt

1∫
t

(s− t)−γ

Γ(1− γ)
(x(s)− x(1))ds,

where Γ is the Euler gamma function.
The left Iµ0+x and the right Iµ1−x Riemann–Liouville fractional integrals of x of order µ are

defined respectively by

Iµ0+x(t) =

t∫
0

(t− s)µ−1

Γ(µ)
x(s)ds and Iµ1−x(t) =

1∫
t

(s− t)µ−1

Γ(µ)
x(s)ds.

If x ∈ C(J) and γ ∈ (0, 1), then
cDγ

0+I
γ
0+x(t) = x(t), cDγ

1−I
γ
1−x(t) = x(t) for t ∈ J,

Iγ0+
cDγ

0+x(t) = x(t)− x(0), Iγ1−
cDγ

1−x(t) = x(t)− x(1) for t ∈ J
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and
Iγ10+I

γ2
0+x(t) = Iγ1+γ2

0+ x(t), Iγ11−I
γ2
1−x(t) = Iγ1+γ2

1− x(t) for t ∈ J, γ1, γ2 ∈ (0,∞).

Problem (1.1), (1.2) is at resonance because
{
c(1 + tβ

Γ(β+1)) : c ∈ R
}

is the set of nontrivial
solutions to the homogeneous boundary value problem cDα

1−
cDβ

0+x = 0, (1.2).

2 Operator H and its properties
Let an operator H : X → X be given by the formula

H(x, c) =

(
c
(
1 +

tβ

Γ(β + 1)

)
+ Iβ0+I

α
1−f(t, x(t)), c− Iα1−f(t, x(t))

∣∣∣
t=0

)
.

Note that

Iβ0+I
α
1−f(t, x(t)) =

t∫
0

(t− s)β−1

Γ(β)

( 1∫
s

(τ − s)α−1

Γ(α)
f(τ, x(τ))dτ

)
ds

and

Iα1−f(t, x(t))
∣∣
t=0

=

1∫
0

sα−1

Γ(α)
f(s, x(s))ds.

If x ∈ C(J) and 0 ≤ t1 < t2 ≤ 1, then∣∣Iβ0+Iα1−x(t)∣∣ ≤ ∥x∥
Γ(β + 1)Γ(α+ 1)

, t ∈ J, (2.1)∣∣∣Iβ0+Iα1−x(t)∣∣t=t2
− Iβ0+I

α
1−x(t)

∣∣
t=t1

∣∣∣ ≤ 2∥x∥
Γ(β + 1)Γ(α+ 1)

(t2 − t1)
β.

Lemma 2.1. H is a completely continuous operator.
The following result gives the relation between fixed points of H and solutions to problem

(1.1), (1.2).
Lemma 2.2. If (x, c) ∈ X is a fixed point of H, then x is a solution of problem (1.1), (1.2).
Proof. Let H(x, c) = (x, c) for some (x, c) ∈ X. Then

x(t) = c
(
1 +

tβ

Γ(β + 1)

)
+ Iβ0+I

α
1−f(t, x(t)), t ∈ J, (2.2)

Iα1−f(t, x(t))
∣∣∣
t=0

= 0. (2.3)

Applying cDβ
0+ to (2.2), we get

cDβ
0+x(t) = c+ Iα1−f(t, x(t)), t ∈ J. (2.4)

Hence cDβ
0+x ∈ C(J), cDβ

0+x(t)|t=1 = c and (see (2.3)) cDβ
0+x(t)|t=0 = c. We now apply cDα

1− to
(2.4) and have

cDα
1−

cDβ
0+x(t) = f(t, x(t)), t ∈ J.

Thus x is a solution of equation (1.1). From
cDβ

0+x(t)
∣∣∣
t=1

= c, cDβ
0+x(t)

∣∣∣
t=0

= c

and (see (2.2)) x(0) = c it follows that x satisfies (1.2). Consequently, x is a solution of problem
(1.1), (1.2).
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3 Existence result
Theorem 3.1. Suppose that

(H1) there exists M > 0 such that xf(t, x) > 0 for t ∈ J and |x| ≥ M ;

(H2) there exist positive constants A, B and ρ ∈ (0, 1) such that |f(t, x)| ≤ A + B|x|ρ for t ∈ J
and x ∈ R.

Then problem (1.1), (1.2) has at least one solution.

Proof. Keeping in mind Lemma 2.2, we need to prove that H admits a fixed point. We prove the
existence of a fixed point of H by the Schaefer fixed point theorem [1,4]. To this end, let

Ω =
{
(x, c) ∈ X : (x, c) = λH(x, c) for some λ ∈ (0, 1)

}
.

Since H is a completely continuous operator, it follows from the Schaefer fixed point theorem that
the boundedness of Ω in X guarantees the existence of a fixed point of H.

Let (x, c) = λH(x, c) for some (x, c) ∈ X and λ ∈ (0, 1), that is,

x(t) = λc
(
1 +

tβ

Γ(β + 1)

)
+ λIβ0+I

α
1−f(t, x(t)), t ∈ J, (3.1)

(1− λ)c = −λIα1−f(t, x(t))
∣∣∣
t=0

. (3.2)

We claim that
|x(ξ)| < M for some ξ ∈ J, (3.3)

where M is from (H1). By (3.1), x(0) = λc. Suppose that x > M on J . Then c > 0 and, by (H1),
Iα1−f(t, x(t))|t=0 > 0, contrary to (3.2) because (1 − λ)c > 0 and Iα1−f(t, x(t))|t=0 > 0. Similarly,
x < −M on J gives contrary to (3.2). Hence (3.3) is valid.

Putting t = ξ in (3.1), we have

λc =
1

1 + ξβ/Γ(β + 1)

(
x(ξ)− λIβ0+I

α
1−f(t, x(t))

∣∣
t=ξ

)
. (3.4)

Thus (see (3.1))

x(t) =
1 + tβ/Γ(β + 1)

1 + ξβ/Γ(β + 1)

(
x(ξ)− λIβ0+I

α
1−f(t, x(t))

∣∣
t=ξ

)
+ λIβ0+I

α
1−f(t, x(t)), t ∈ J.

Hence (see (H2), (2.1) and (3.3))

|x(t)| ≤
(
1 +

1

Γ(β + 1)

)(
M +

A+B∥x∥ρ

Γ(β + 1)Γ(α+ 1)

)
+

A+B∥x∥ρ

Γ(β + 1)Γ(α+ 1)
, t ∈ J.

In particular,
∥x∥ ≤ W1 +W2∥x∥ρ, (3.5)

where

W1 = M
(
1 +

1

Γ(β + 1)

)
+

A

Γ(β + 1)Γ(α+ 1)

(
2 +

1

Γ(β + 1)

)
,

W2 =
B

Γ(β + 1)Γ(α+ 1)

(
2 +

1

Γ(β + 1)

)
.
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Since
lim
v→∞

W1 +W2v
ρ

v
= 0,

there exists S > 0 such that W1 +W2v
ρ < v or v > S. Consequently (see (3.5)), ∥x∥ ≤ S.

Hence |f(t, x(t))| ≤ L for t ∈ J , where L = A + BSρ. In order to give the bound for c, we
consider two cases if λ ∈ (0, 1/2] of λ ∈ (1/2, 1). Let λ ∈ (0, 1/2]. Then (see (3.2))

|c| ≤ λ

1− λ

1∫
0

sα−1

Γ(α)
|f(s, x(s))|ds ≤ L

Γ(α+ 1)
.

Let λ ∈ (1/2, 1). Then (see (3.4))

|c| ≤ 1

λ(1 + ξβ/Γ(β + 1))

(
|x(ξ)|+

∣∣Iβ0+Iα1−f(t, x(t))|t=ξ

∣∣) ≤ 2
(
M +

L

Γ(β + 1)Γ(α+ 1)

)
.

To summarize, we have |c| ≤ D, where

D = max

{
L

Γ(α+ 1)
, 2
(
M +

L

Γ(β + 1)Γ(α+ 1)

)}
.

As a result, Ω is bounded and ∥x∥ ≤ S, |c| ≤ D for (x, c) ∈ Ω.

Example 3.2. Let p ∈ C(J), ρ ∈ (0, 1) and f(t, x) = p(t) + sinx+ 2|x|ρ arctanx. Then f satisfies
conditions (H1) and (H2) for M = ρ

√
1 + ∥p∥ and A = 1 + ∥p∥, B = π. By Theorem 3.1, there

exists a solution x of the equation

cDα
1−

cDβ
0+x(t) = p(t) + sinx(t) + 2|x(t)|ρ arctanx(t),

satisfying the boundary condition (1.2).
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1 Basic concepts of the theory of time scales
A time scale T is an arbitrary nonempty closed subset of the real line R. Assume T has the topology
that it inherits from R with the standard topology.

Since the object of our study is the oscillations of solutions of dynamic equations, we will assume
supT = ∞. For any interval [a, b] ⊂ R we define [a, b]T = [a, b] ∩ T.

For a time scale T, the forward jump operator σ(t) : T → T is defined as σ(t)=inf{s∈T : s> t};
the backward jump operator ρ(t) : T → T is defined as ρ(t) = sup{s ∈ T : s < t}. The graininess
function µ : T → [0, 1) is defined as µ(t) := σ(t)− t.

A point t ∈ T is called right-dense if t > inf T and ρ(t) = t. A point t ∈ T is called left-dense if
t < supT and σ(t) = t. Points that are right- and left-dense at the same time are called dense.

If σ(t) > t (ρ(t) < t), we say that t is right-scattered (left-scattered). Points that are right- and
left-scattered at the same time are called isolated points.

If T has a left-scattered maximum M , then we define Tk = T \ {M}; otherwise, Tk = T.
A function f : T → Rd is called ∆-differentiable at t ∈ Tk if there exists the finite in Rd limit

f∆(t) = lim
s→t

f(σ(t))− f(t)

σ − t
,

and the number f∆(t) is called the ∆-derivative at the point t.
We cite some known results [1]:

(a) If t ∈ Tk is a right-dense point of a time scale T, then f is ∆-differentiable at t iff the limit

f∆(t) = lim
s→t

f(t)− f(s)

t− s

exists in Rd.

(b) If t ∈ Tk is a right-scattered point of a time scale T and f is continuous at t, then f is
∆-differentiable at t and

f∆(t) =
f(σ(t))− f(t)

µ(t)
.
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2 Problem statement and auxiliary results
We consider the system of differential equations

dx

dt
= X(t, x), (2.1)

where x ∈ D, D ⊂ Rd, and the corresponding system of dynamic equations

x∆λ = X(t, xλ), (2.2)

where t ∈ Tλ, λ ∈ Λ ⊂ R, λ = 0 is a limit point of the set Λ, xλ : Tλ → Rd, and x∆λ (t) is the
∆-derivative of xλ(t) in Tλ.

Assume that X(t, x) is continuously differentiable and bounded with its partial derivatives, i.e.
there exists C > 0 such that

|X(t, x)|+
∣∣∣∂X(t, x)

∂t

∣∣∣+ ∥∥∥∂X(t, x)

∂x

∥∥∥ ≤ C (2.3)

for t ∈ Tλ and x ∈ D. Here ∂X
∂x is the corresponding Jacobian matrix, | · | is the Euclidian norm

of a vector, and ∥ · ∥ is the norm of a matrix.
Let µλ := sup

t∈Tλ

µλ(t), where µλ : Tλ → [0,∞) is the graininess function. If µλ → 0 as λ → 0,

then Tλ approaches the continuous time scale T0 = R. Therefore, it is natural to expect that, under
certain conditions, the existence of a bounded solution of equation (2.1) implies the existence of a
bounded solution of equation (2.2) on the time scale Tλ.

Let t0, t0 + T ∈ Tλ, and let x(t) and xλ(t) be solutions of (2.1) and (2.2) on [t0, t0 + T ] and on
[t0, t0 + T ]Tλ

, respectively, with initial conditions x(t0) = x0, xλ(t0) = xλ0.

Lemma 2.1 ( [3]). If xλ and x(t) are the corresponding solutions of (2.2) and (2.1), then the
inequality

|x(t)− xλ(t)| ≤ µ(λ)K(T ) (2.4)
holds for t ∈ [t0, t0 + T ]Tλ

. Here

µ(λ) = sup
t∈[t0,t0+T ]Tλ

µλ(t), K(T ) = max{L1, L2},

L1 = µλ

(
ΠeCC1 +

1

4
ΠC2

1e
C
)
, L2 = µλ

(
ΠeC

(
C1 +

C2
1

4

)
+ 3C1

)
.

Under condition (2.3), the following statement holds.

Lemma 2.2 ([3]). A solution xλ of system (2.2) continuously depends on the initial data until the
moment it leaves the region D.

We also give the definition of the exponential stability for solutions of dynamic equations on
time scales which is similar to the definition of the exponential stability for solutions of differential
equations [2].

Definition 2.1. A solution xλ(t) of system (2.2), defined on Tλ, is called exponentially stable,
uniformly in t0, if there exist δ > 0, N > 0 and α > 0 such that for any solution yλ(t) of system
(2.2), satisfying

|xλ(t0)− yλ(t0)| < δ,

the inequality
|xλ(t)− yλ(t)| ≤ Ne−α(t−t0)

∣∣xλ(t0)− yλ(t0)
∣∣

holds for t ≥ t0. Here the constants δ, N and α are independent of t0.
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3 Main results
We found the minimum conditions on the graininess function µ0 under which the existence of a
bounded solution of the dynamical system (2.2) on the corresponding time scale Tλ0 implies the
existence of a bounded solution of this system on any scale whose graininess function is less than
µ0.

Theorem 3.1. Let the following conditions be satisfied:

(1) X(t, x) is defined and continuously differentiable for t ∈ R, x ∈ D, where D is a domain in
the space Rd, and satisfies condition (2.3).

(2) There exists µ0 > 0 such that system (2.2) has a bounded on Tλ0 and exponentially stable,
uniformly in t0, solution xλ0(t), which belongs to D together with some its ρ-neighborhood.

Then, if the inequalities

µ0K
( ln 4N

α
+ 1

)
≤ δ

8
, (3.1)

3Nδ

2
< ρ, (3.2)

µ0 ≤
ρ

4C
(3.3)

hold, where δ, N and α are the constants from Definition 2.1 and C is from condition (2.3), then,
for all µλ satisfying µλ < µ0, system (2.2) has a solution bounded on Tλ.

Proof. Without loss of generality, we set t0 = 0 and xλ(0) = x(0).
It follows from condition (2) of this theorem that, for µλ = µ0, system (2.2) has an exponentially

stable, uniformly in tk0 , solution xλ0 , which belongs to D together with some its ρ-neighborhood.
Hence, there exists a constant C0 > 0 such that

|xλ0(tk)| ≤ C0 for an arbitrary tk ∈ Tλ0.

Let tk0 be the smallest number on the time scale Tλ0 , defined by the graininess function µ0,
such that tk0 ≥ ln 4N

α . Clearly, tk0 ≤ ln 4N
α + 1.

Now we fix 0 < µλ < µ0 and denote by xλ solutions of system (2.2) on the corresponding time
scale Tλ.

Let us consider points t ∈ [0, tk0 ]Tλ
. For every t one can indicate the smallest number tk on the

scale Tλ0 such that
0 ≤ tk − t ≤ µ0.

Let xλ be a solution of system (2.2) such that xλ(0) = xλ0(0). We denote by x(t) the solution
of system (2.1) with the initial data x(0) = xλ0(0). We can show that x(t) can be continued to the
interval [0, tk0 ]. Indeed, in view of inequality (3.3) and Lemma 2.1, it follows from Picard’s theorem
that x(t) is defined at each point nµ0 ≤ tk0 , n ∈ N, and takes on the values which belong to D
together with their ρ

2 -neighborhoods. Thus, the solution x(t) is continued to the whole interval
[0, tk0 ] and belongs to D together with its ρ

2 -neighborhood. It follows from (2.4) and (3.1) that the
solution xλ of system (2.2) is defined for all t ∈ Tλ that do not exceed tk0 ∈ Tλ0 , and belongs to
the domain D.

Further, we partition the axis into the intervals [ntk0 , (n + 1)tk0 ] and denote by tn the largest
numbers in Tλ such that tn ≤ ntk0 . Let us examine how the solution xλ(t) of equation (2.2),
starting at tn, n ∈ N, behaves on [tn, (n+ 1)tk0)]Tλ

.
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Let us now construct a solution of equation (2.2) which is bounded on the whole axis of the
timescale Tλ.

Let xλ,t∗ be such a solution of equation (2.2) which starts at a point t∗ of Tλ, t ≥ t∗, and
xλ,t∗(t

∗) = xλ(t
∗).

For each t∗ we choose the smallest non-negative number t̃λ0 ∈ Tλ0 such that t∗ ≤ t̃λ0 ≤ t∗ +µ0.

We now consider a solution xλ,t∗(t) such that |xλ,t∗(t∗)−xλ0(t̃λ0)| ≤ 3δ
4 , where xλ0 is a bounded

solution of equation (2.2) on the timescale Tλ0 with the graininess function µλ = µ0, which is
indicated in the statement of this theorem.

We partition the left semi-axis of the timescale Tλ into the intervals [−ntk0 ,−(n+ 1)tk0 ], n →
−∞. For each point −ntk0 we choose the largest tn ∈ Tλ such that

tn ≤ −ntk0 ≤ tn + µ0.

The point t0 is chosen in the same way.
Let us now consider the set of solutions xλ,tn of equation (2.2), whose initial data satisfy the

inequality ∣∣xλ,tn(tn)− xλ0(−ntk0)
∣∣ ≤ 3δ

4
.

Obviously, these solutions satisfy conditions 1◦–3◦. Let Sn be the set of values of these solutions
at tn. Each Sn is the image of the ball of radius 3δ

4 centered at the point xλ0(−ntk0), generated by
the mapping xλ,tn . By Lemma 2.2 and conditions 1◦-3◦, each set Sn is a nonempty subset of Sn−1

and a compact.
Let us denote z =

⋂
n
Sn and consider the solution xλ,t1 of equation (2.2) with the initial condition

xλ,t1(t1) = z. This solution can be continued to the left to the point tn, at which it belongs to
the 3δ

4 -neighborhood of xλ0(tn) for every natural n. It means that this solution is defined for all t
satisfying the inequality in 3◦. Hence, it is bounded. This proves that system (2.2) has a bounded
solution, defined on Tλ.

The following statement provides the conditions for the existence of a solution of system (2.2)
bounded on Tλ given the existence of such a solution of the corresponding system (2.1).

Theorem 3.2. Let the following conditions be satisfied:

(1) X(t, x) is defined and continuously differentiable for t ∈ R, x ∈ D, where D is a domain in
Rd, and satisfies condition (2.3).

(2) System (2.1) has a bounded on R and exponentially stable, uniformly in t0 ∈ R, solution x(t),
which belongs to D together with some its ρ-neighborhood.

Then there exists µ0 such that for all 0 < µλ ≤ µ0 system (2.2) has a solution xλ(t) bounded on
Tλ. Moreover,

sup
t∈Tλ

|xλ(t)− x(t)| → 0, µλ → 0.

The existence of µ0 > 0, such that for all 0 < µλ ≤ µ0 system (2.2) has a solution xλ(t) bounded
on Tλ, follows from Theorem 2.3 [3].

We also obtained the opposite result.

Theorem 3.3. Let the following conditions be satisfied:

(1) the function X(t, x) satisfies condition (1) of Theorem 3.1;
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(2) there exists µ0 > 0 such that system (2.2) with initial data at the point t0 = 0 has a solution,
bounded on Tλ0 and uniformly in k0 exponentially stable, which belongs to D with some its
ρ-neighborhood.

Then, if inequalities (3.1)–(3.3) hold, then system (2.1) has a solution bounded on R.

The proof of this theorem is based on the reasoning in the proof of Theorem 3.1.
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1 Introduction
We investigate the Cauchy–Dirichlet problem for a wide class of quasi-linear parabolic equations
with the model representative:

ut −△u+ g(t)|u|q−1u = 0, 0 < q < 1,

where the continuous absorption potential g(t) is positive for t > 0 and degenerates at t = 0:
g(0) = 0. For an arbitrary boundary regime (without any subordination conditions), a certain type
of weakened localization is obtained. Under some restriction from below on the degeneration of the
potential, the strong localization holds for an arbitrary boundary regime (including regimes that
do not satisfy any conditions of subordination).

It is well-known that, in case of non-degenerate absorption potential g(t, x), i.e., when

g(t, x) ≥ c0 > 0 ∀ (t, x) ∈ (0, T ]× Ω,

an arbitrary energy solution of the considered problem has the finite-speed propagation property
for solution’s support:

ζ(t) := sup
{
|x| : x ∈ suppu(t, · )

}
< 1 + c(t), where c(t) → 0 as t → 0.

In particular, this implies the localization of solution (see, e.g., [3, 5] and the references therein):

ζ(t) := sup
{
|x| : x ∈ suppu(t, · )

}
< c1 = c1(T1) < l ∀ t : 0 ≤ t < T1 = T1(l) ≤ T. (1.1)

For various quasi- and semi-linear parabolic equations, the localization of solutions’ supports were
studied by many authors (see, e.g., [3,7] and the references therein). It seems that Kalashnikov [8]
was the first who investigated the localization property for the first initial-boundary problem for a
1-D heat equation. More precisely, he considered problem (2.1)–(2.4) in the domain [1,+∞) with
n = 1,

ai(t, x, s, ξ) = ξ, ξ ∈ R1,

g(t, x) = g0(t) ∈ C1([1,+∞)) ∩ L∞([1,+∞)), g0(0) = 0, g0(t) > 0 ∀ t > 0
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and
u(t, 1) = f(t) ∈ C1([1,+∞)) ∩ L∞([1,+∞)).

Under the assumption
g0(t)

−1 · f(t) → 0 as t → 0, (1.2)
he proved that solutions possess weak localization property for t separated from 0:

sup
{
ζ(t) : 0 < δ ≤ t < T

}
< c1 = c1(δ) < ∞ ∀ δ > 0.

On the other side, following G. I. Barenblatt’s conjecture on an initial jump of the free boundary,
Kalashnikov in [8] proved that

inf
{
ζ(t) : 0 < t < t∗

}
≥ c2 = c2(t∗) > 0, (1.3)

if potential g0(t) decreases fast enough when t → 0. In particular, the free boundary has an initial
jump (1.3), when

g0(t) = t
1
2 exp

(
− 1

t2

)
, f0(t) = t exp

(
− 1

t2

)
.

The analysis of [8] concerns only the case of strongly degenerating boundary regimes f(t) (see
condition (1.2)). Method [12] involutes arbitrary f(t), which are strongly degenerate, weakly
degenerate as well as non-degenerate as t → 0. Also, note that the barrier technique of [8] can be
applied only to equations that admit the comparison theorems. Our approach is adaptation and
combination of a variant of local energy method and an estimate method of Saint–Venant’s principle
type. These methods are the result of a long evolution of ideas coming from the theory of linear
elliptic and parabolic equations. The essence of the energy method consists of special inequalities
links different energy norms of solutions. This method was developed and used in [2,4,5,9,11,12].
The second approach is a technique of parameter’s introduction. This method was offered by
G. A. Iosif’jan and O. A. Oleinik [6].

2 Setting of the problem and the main results
Let QT = (0, T )×Ω, 0 < T < ∞, Ω ⊂ {x ∈ Rn : x| > 1} be a bounded domain in Rn, n > 1, with
C1-boundary ∂Ω = ∂0Ω ∪ ∂1Ω, where

∂0Ω =
{
x ∈ Rn : |x| = 1

}
, ∂1Ω ⊂

{
x ∈ Rn : |x| > l

}
, where l = const > 1. (2.1)

The aim of this brief communication is to investigate the behavior of weak solutions of the following
initial-boundary problem:

ut −
n∑

i=1

(
ai(t, x, u,∇xu)

)
xi
+ g(t, x)|u|q−1u = 0 in QT , 0 < q < 1, (2.2)

u(t, x) = f(t, x) on (0, T )× ∂0Ω, u(t, x) = 0 on (0, T )× ∂1Ω, (2.3)
u(0, x) = 0 ∀x ∈ Ω. (2.4)

Here the functions ai(t, x, s, ξ) (i = 1, . . . , n) are continuous in all arguments and satisfy the fol-
lowing conditions for (t, x, s, ξ) ∈ (0, T )× Ω× R1 × Rn:

|ai(t, x, s, ξ)| ≤ d1|ξ|, d1 = const < ∞,
n∑

i=1

(
ai(t, x, s, ξ)− ai(t, x, s, η)

)
(ξi − ηi) ≥ d0|ξ − η|2, d0 = const > 0.
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The absorption potential g(t, x) is continuous nonnegative function such that

g(t, x) > 0 ∀ (t, x) ∈ (0, T ]× Ω; g(0, x) = 0 ∀ x ∈ Ω. (2.5)

Without loss of generality assume that the function f(t, x) in (2.3) is defined in the domain (0, T )×Ω
and

f(t, · ) ∈ L2(0, T ;H
1(Ω, ∂1Ω)) ∩H1(0, T ;L2(Ω)).

Following [1], by a weak solution of problem (2.1)–(2.4) we understand the function

u(t, · ) ∈ f(t, · ) + L2

(
0, T ;H1(Ω, ∂Ω)

)
such that

ut(t, · ) ∈ L2(0, T ; (H
1(Ω, ∂Ω))∗),

and u satisfies (2.3), (2.4) and the integral identity∫
(0,T )

⟨ut, ξ⟩ dt+
∫

(0,T )×Ω

n∑
i=1

ai(t, x, u,∇xu)ξxi dx dt+

∫
(0,T )×Ω

g(t, x)|u|q−1uξ dx dt = 0

∀ ξ ∈ L2(0, T ;H
1(Ω, ∂Ω)).

With boundary regime f(t, x) from (2.3), we associate the function:

F (t) := sup
06s6t

∫
Ω

f(s, x)2 dx+

t∫
0

∫
Ω

(
|∇xf |2 + g(t, x)|f(t, x)|q+1

)
dx dt+

t∫
0

∫
Ω

|ft(t, x)|2 dx dt (2.6)

which will be used in all of our main results.

Theorem 1 (Theorem [Weakened localization for an arbitrary regime). Let the absorption potential
g from (2.2) satisfy condition (2.5). Then an arbitrary energy solution u(t, x) to problem (2.1)–(2.4)
possesses the weakened localization property. That is, there exists ζ1(t) ∈ C(0,∞) such that

ζ(t) ≤ min(ζ1(t), cL1) for all t > 0,

where ζ( · ) is the compactification radius defined from (1.1) and L1 = diamΩ.

The function ζ1(t) may go to infinity as t → 0. That is, an infinite initial jump of the support
is possible.

Theorem 2 (Strong localization for an arbitrary regime). Let the function F ( · ) be from (2.6), the
absorption potential g from (2.2) have a nonnegative monotonic minorant:

g(t, x) ≥ gω(t) := exp
(
−ω(t)

t

)
∀ t > 0,

where ω(t) is a nonnegative nondecreasing function such that ω(t) → 0 as t → 0. Then an arbitrary
energy solution u(t, x) of problem (2.1)–(2.4) possesses the strong localization property and the
following upper estimate holds:

ζ(t) ≤ 1 +
t

2
+ c1

{
t ln(c2F (t)) + c3t ln t

−1 + c4ω
( t

2

)} 1
2 ∀ t < T.

Let us notice that in both theorems we do not impose any conditions on the function F ( · ) from
(2.6).
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In the paper, necessary conditions of optimality of the initial and final moments, delay param-
eters, the initial vector and initial functions, the control function are obtained for the optimization
problem containing the nonlinear functional differential equation with constant delays in the phase
coordinates and controls.

Let Rn be the n-dimensional vector space of points x = (x1, . . . , xn)T . Suppose that P ⊂ Rk,
Q ⊂ Rm, V ⊂ Rr are convex and open sets, with k + m = n, x = (p, q)T ∈ O = (P,Q)T .
Let a11 < a12 < a21 < a22, τ2 > τ1 > 0, σ2 > σ1 > 0, θ2 > θ1 > 0 be given numbers, with
a21 − a12 > τ2; let I = [a11, a22], I1 = [τ̂ , a12] and I2 = [a11 − θ2, a22], where τ̂ = a11 −max{τ2, σ2}.
Furthermore, let the n-dimensional function f(t, x, p, q, u, v) be continuous on I ×O×P ×Q×V 2,
and continuously differentiable with respect to (x, p, q, u, v). Denote by ACφ(I1, P ) the space of
absolutely continuous functions φ : I1 → Rk, with |φ̇(t)| ≤ const. Let us introduce the sets:

Φ = ACφ(I1,K), G = ACg(I1,M), Ω = ACu(I2, U),

where K ⊂ P , M ⊂ Q and U ⊂ V are convex and compact sets. To any element

w = (t0, t1, τ, σ, θ, p0, φ, g, u) ∈W

= (a11, a12)× (a21, a22)× (τ1, τ2)× (σ1, σ2)× (θ1, θ2)× P0 × Φ×G× Ω,

where P0 ⊂ P is a convex and compact set, we assign the nonlinear controlled functional differential
equation with delays in the phase coordinates and controls

ẋ(t) = f
(
t, x(t), p(t− τ), q(t− σ), u(t), u(t− θ)

)
, t ∈ [t0, t1] (1)

with the mixed initial condition{
x(t) = (p(t), q(t))T = (φ(t), g(t))T , t ∈ [τ̂ , t0),

x(t0) = (p0, g(t0))
T .

(2)

Condition (2) is said to be the mixed initial condition, because it consists of two parts: the first
part is p(t) = φ(t), t ∈ [τ̂ , t0), p(t0) = p0, the discontinuous part, since in general p(t0) ̸= φ(t0);
discontinuity at the initial moment may be related to the instant change in a dynamic process, for
example, changes of investment and environment etc; the second part is q(t) = g(t), t ∈ [τ̂ , t0], the
continuous part, since always q(t0) = g(t0).
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Definition 1. Let w = (t0, t1, τ, σ, θ, p0, φ, g, u) ∈ W . A function x(t) = x(t;w) ∈ O, t ∈ [τ̂ , t1],
is called a solution of equation (1) with the initial condition (2) or a solution corresponding to
the element w, if it satisfies condition (2) and is absolutely continuous on the interval [t0, t1] and
satisfies equation (1) almost everywhere on [t0, t1].

Let the scalar-valued functions zi(t0, t1, τ, σ, θ, p, x), i = 0, l, be continuously differentiable on
[a11, a12]× [a21, a22]× [τ1, τ2]× [σ1, σ2]× [θ1, θ2]× P ×O.

Definition 2. An element w = (t0, t1, τ, σ, θ, p0, φ, g, u) ∈ W is said to be admissible if the corre-
sponding solution x(t) = x(t;w) satisfies the boundary conditions

zi(t0, t1, τ, σ, θ, p0, x(t1)) = 0, i = 1, l. (3)

By W0 we denote the set of admissible elements.

Definition 3. An element w0 = (t00, t10, τ0, σ0, θ0, p00, φ0, g0, u0) ∈ W0 is said to be optimal if for
an arbitrary element w ∈W0 the inequality

z0
(
t00, t10, τ0, σ0, θ0, p00, x0(t10)

)
≤ z0

(
t0, t1, τ, σ, θ, p0, x(t1)

)
, (4)

where x0(t) = x(t;w0), holds.

(1)–(4) is called the optimization problem for the functional differential equation (1) with the
mixed initial condition (2).

Theorem 1. Let w0 be an optimal element and let x0(t) = (p0(t), q0(t))
T , t ∈ [τ̂ , t10] be the

corresponding solution. The function ġ0(t) is continuous at the point t00. Then there exist a vector
π = (π0, . . . , πl) ̸= 0, with π0 ≤ 0, and a solution ψ(t) = (ψ1(t), . . . , ψn(t)) of the equation

ψ̇(t) = −ψ(t)f0x[t]− ψ(t+ τ0)
(
f0p[t+ τ0],Θn×m

)
− ψ(t+ σ0)

(
Θn×k, f0q[t+ σ0]

)
, t ∈ (t00, t10)

with the initial condition
ψ(t10) = πZ0x, ψ(t) = 0, t > t10,

where Θn×m is the n×m zero matrix and Z = (z0, . . . , zl)T ,

Z0x =
∂Z(t00, t10, τ0, σ0, θ0, p00, x0(t10))

∂x
,

f0x[t] = fx
(
t, x0(t), p0(t− τ0), q0(t− σ0), u0(t), u0(t− θ0)

)
,

such that the following conditions hold:

1) the condition for the initial moment t00

πZ0t0 +
(
πZ0q +

(
ψk+1(t00), . . . , ψn(t00)

))
q̇0(t00) = ψ(t00)f0[t00] + ψ(t00 + τ0)f1,

where

f0[t] = f
(
t, x0(t), p0(t− τ0), q0(t− σ0), u0(t), u0(t− θ0)

)
,

f1 = f
(
t00 + τ0, x0(t00 + τ0), p00, q0(t00 + τ0 − σ0), u0(t00 + τ0), u0(t00 + τ0 − θ0)

)
− f

(
t00 + τ0, x0(t00 + τ0), φ0(t00), q0(t00 + τ0 − σ0), u0(t00 + τ0), u0(t00 + τ0 − θ0)

)
;

2) the condition for the final moment t10

πZ0t1 = −ψ(t10)f0[t10];
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3) the condition for the delay τ0

πZ0τ = ψ(t00 + τ0)f1 +

t10∫
t00

ψ(t)f0p[t]ṗ0(t− τ0) dt;

4) the condition for the delay σ0

πZ0σ =

t10∫
t00

ψ(t)f0q[t]q̇0(t− σ0) dt;

5) the condition for the delay θ0

πZ0θ =

t10∫
t00

ψ(t)f0v[t]u̇0(t− θ0) dt;

6) the condition for the vector p00(
πZ0p + (ψ1(t00), . . . , ψk(t00))

)
p00 = max

p0∈P0

(
πZ0p + (ψ1(t00), . . . , ψk(t00))

)
p0;

7) the condition for the initial function φ0(t)

t00∫
t00−τ0

ψ(t+ τ0)f0p[t+ τ0]φ0(t) dt = max
φ∈Φ

t00∫
t00−τ0

ψ(t+ τ0)f0p[t+ τ0]φ(t) dt;

8) the condition for the initial function g0(t)

(
ψk+1(t00), . . . , ψn(t00)

)
g0(t00) +

t00∫
t00−σ0

ψ[t+ σ0]f0q[t+ σ0]g0(t) dt

= max
g∈G

[
(ψk+1(t00), . . . , ψn(t00))g(t0) +

t00∫
t00−σ0

ψ(t+ σ0)f0q[t+ σ0]g(t) dt

]
;

9) the condition for the control function u0(t)

t10∫
t00

ψ(t)
[
f0u[t]u0(t) + f0v[t]u0(t− θ0)

]
dt = max

u∈Ω

t10∫
t00

ψ(t)
[
f0u[t]u(t) + f0v[t]u(t− θ0)

]
dt.

Theorem 1 is proved by the scheme given in [2]. A problem with the mixed initial without
optimization of delay parameters was considered in [1]. Now we consider a particular case of
problem (1)–(4):

ẋ(t) = (ṗ(t), q̇(t))T

= A(t)x(t) +B(t)p(t− τ) + C(t)q(t− σ) +D(t)u(t) + E(t)u(t− θ), t ∈ [t0, t1], (5){
x(t) = (p(t), q(t))T = (φ(t), g(t))T , t ∈ [τ̂ , t0),

x(t0) = (p0, g(t0))
T .

(6)

zi(τ, σ, θ, x(t1)) = 0, i = 1, l (7)
z0(τ, σ, θ, x(t1)) → min . (8)
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Here A(t), B(t), C(t), D(t) and E(t) are the continuous matrix functions with dimensions n × n,
n × k, n ×m, n × r and n × r, respectively; t0, t1 are fixed moments; φ(t), g(t) are fixed initial
functions; p0 is a fixed initial function. In this case we have

w = (τ, σ, θ, u) ∈W = (τ1, τ2)× (σ1, σ2)× (θ1, θ2)× Ω and w0 = (τ0, σ0, θ0, u0);

Z(τ, σ, θ, x) = (z0(τ, σ, θ, x), . . . , zl(τ, σ, θ, x))T , Z0x =
∂Z(τ0, σ0, θ0, x0(t1))

∂x
.

Theorem 2. Let w0 be an optimal element for problem (5)–(8). Then there exist a vector π =
(π0, . . . , πl) ̸= 0, with π0 ≤ 0, and a solution ψ(t) = (ψ1(t), . . . , ψn(t)) of the equation

ψ̇(t) = −ψ(t)A(t)− ψ(t+ τ0)(B(t+ τ0),Θn×m)− ψ(t+ σ0)(Θn×k, C(t+ σ0)), t ∈ (t0, t1)

with the initial condition
ψ(t1) = πZ0x, ψ(t) = 0, t > t1,

such that the following conditions hold:

10) the condition for the delay τ0

πZ0τ = ψ(t0 + τ0)[p0 − φ(t0)] +

t10∫
t0

ψ(t)B[t]ṗ0(t− τ0) dt;

11) the condition for the delay σ0

πZ0σ =

t1∫
t0

ψ(t)C(t)q̇0(t− σ0) dt;

12) the condition for the delay θ0

πZ0θ =

t1∫
t0

ψ(t)E(t)u̇0(t− θ0) dt;

13) the condition for the control function u0(t)

t1∫
t0

ψ(t)
[
D(t)u0(t) + E(t)[t]u0(t− θ0)

]
dt = max

u∈Ω

t1∫
t0

ψ(t)
[
D(t)u(t) + E(t)u(t− θ0)

]
dt.
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1 Linear functionals and operators on the spaces
of regulated functions

Let −∞ < a < b < ∞. Rn×n is the space of real n× n-matrices. Let BVn and Gn be the spaces of
n-vector valued functions with bounded variation on [a, b] or regulated on [a, b], respectively. (By
regulated functions we understand functions having only discontinuities of the first kind.) Similarly,
BVn×n and Gn×n are spaces of of n×n-matrix valued functions having the corresponding properties.
The function R : [a, b] → Rn×n is said to be summable if it vanishes except for a countable set and∑
a≤t≤b

‖R(t)‖ < ∞.

Theorem 1.1. If Φ is a continuous linear operator from G into Rn then there exist K, K̃ ∈ BVn×n,
M ∈ Rn×n and a summable function R : [a, b] → Rn×n such that

Φ(x) = M x(a) +

b∫
a

K dx−
∑

a≤t<b

R(t)∆+x(t) for x ∈ Gn

and

Φ(x) = M x(a) +

b∫
a

K̃ dx+
∑

a<t≤b

R(t)∆−x(t) for x ∈ Gn.

Remark 1.1. R(t) = Φ(χ
[t]
) and K̃(t) = K(t)−R(t) for t ∈ [a, b].

The representation of linear bounded functionals in the space of left-continuous regulated func-
tions is considerably simpler, as shown by the following older result from 1989, cf. [3]. (Gn

L stands
for the space of n-vector valued functions regulated on [a, b], left-continuous on (a, b] and right-
continuous at a.)

Theorem 1.2. Φ is a linear bounded operator from Gn
L into Rn if and only if there is M ∈ Rn×n

and an n× n-matrix valued function K of bounded variation on [a, b] such that

Φ(x) = M x(a) +

b∫
a

K d[x] for x ∈ Gn
L .

Later Š. Schwabik [7] generalized this result and described a general form of bounded linear
operators on Gn

L .. In what follows Kn×n
L stands for the set of functions K : [a, b] × [a, b] → Rn×n

such that:

• K(t, · ) ∈ BVn×n for t ∈ [a, b];
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• the abstract function t ∈ [a, b] 7→ K(t, · ) ∈ BVn×n is regulated on [a, b] and left-continuous
on (a, b].

Theorem 1.3. L is a linear compact operator on Gn
L if and only if there are a regulated function

A : [a, b] → Rn×n and a function B from the class ∈ Kn×n
L such that

(Lx)(t) = A(t)x(a)+

b∫
a

B(t, s)d[x(s)] for x ∈ Gn
L and t ∈ [a, b].

2 Bray theorem
Remark 2.1. LetKn×n be the set of functionsK : [a, b]×[a, b] → Rn×n such that: K(t, · ) ∈ BVn×n

for t ∈ [a, b] and the mapping t ∈ [a, b] 7→ K(t, · ) ∈ BVn×n is regulated on [a, b]. If K ∈ Kn×n,
then

• K( · , s) ∈ Gn×n for all s ∈ [a, b] and

g(t) :=

b∫
a

dsK(t, s)x(s) ∈ Gn for all x ∈ Gn;

• varbaK(t, · ) ≤ κ < ∞ for all t ∈ [a, b] and

h∗(s) :=

b∫
a

y∗(t)dsK(t, s) ∈ BVn for all y ∈ BVn;

• K( · , s) is left-continuous for all s ∈ [a, b] and g ∈ Gn
L for all x ∈ Gn whenever K ∈ Kn×n

L .

A crucial tool for deriving the explicit form of the dual operator L∗ to L is the next Fubini type
theorem called usually the Bray theorem, cf. [5].

Theorem 2.1. If K ∈ Kn×n, then

b∫
a

y∗(t)dt
[ b∫

a

K(t, s)d[x(s)]
]
=

b∫
a

( b∫
a

y∗(t)dt[K(t, s)]

)
d[x(s)]

holds for any x ∈ Gn and any y ∈ BVn.

3 Linear integral equations in Gn
L

If L : Gn
L → Gn

L is linear compact operator and f ∈ Gn
L , then x− Lx = f can be rewritten as

x(t)−A(t)x(a)−
b∫

a

B(t, s)d[x(s)] = f(t), t ∈ [a, b],

where A ∈ Gn×n
L and B ∈ Kn×n

L . Obviously, Fredholm–Stieltjes integral equations, Volterra–
Stieltjes integral equations, and generalized linear differential equations are special cases. Adjoint
operator L∗ maps BVn × Rn into BVn × Rn. In view of Bray Theorem we have, cf. [5].
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Theorem 3.1. L∗ : (y, γ) ∈ BVn × Rn → (L∗
1(y, γ),L∗

2(y, γ)) ∈ BVn × Rn, where

(
L∗
1(y, γ)

)
(t) = B∗(a, t) γ +

b∫
a

ds[B∗(s, t)] y(s) for t ∈ [a, b],

L∗
2(y, γ) = A∗(a) γ +

b∫
a

d[A∗(s)] y(s).

Analogously. cf. [4], we can treat the boundary value problem

x(t)− x(a)−
t∫

a

d[A]x = f(t)− f(a) on [a, b],

M x(a) +

b∫
a

K d[x] = r,


(BVP)

where A ∈ BVn×n
L , f ∈ Gn

L and r ∈ Rn, and corresponding operator L:Gn
L→Gn

L×Rn. The adjoint
L∗ of L maps (BVn×Rn)×Rn into BVn × Rn. Next theorem has been proved in [4].

Theorem 3.2. Let B(a) = A(a), B(b) = A(b) and B(t) = A(t+) on (a, b). Then (y, γ, δ) ∈ N (L∗)
if and only if

y∗(t)− y∗(b)−
b∫

t

y∗(s)d[B(s)] = δ∗ (K(t)−K(b)) on [a, b],

y∗(a) + δ∗ (K(a)−M) = 0, y∗(b) + δ∗K(b) = 0,

 (BVP*)

Moreover, (BVP) has a solution if and only if
b∫

a

y∗ d[f ] + δ∗ r = 0 for all solutions (y, δ) of (BVP*).

Remark 3.1. Let t0 ∈ [a, b], A ∈ BVn×n, det[I+∆+A(t)] 6= 0 for t ∈ [a, t0) and det[I−∆−A(t)] 6= 0
for t ∈ (t0, b]. Then, there is a unique X : [a, b] → Rn×n such that

X(t) = I +

t∫
t0

d[A]X for t ∈ [a, b].

This X is then called the generalized exponential and denoted X(t) = expdA(t, t0).

4 Alternative approach based on the Lagrange identity
Besides the functional analytical tool, there is an alternative way to obtain the duality theory. This
approach is based on the Lagrange identity. It is well known, cf. [6], that the classical Lagrange
identity can be extended to generalized linear differential systems as follows: Let A ∈ BVn×n

L ,
B(a) = A(a), B(b) = A(b) and B(t) = A(t+) on (a, b). Then

b∫
a

y∗(t)d
[
x(t)−

t∫
a

d[A]x

]
+

b∫
a

d
[
y∗(s)−

b∫
s

y∗ d[B]

]
x(s) = y∗(b)x(b)− y∗(a)x(a)
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for all x ∈ Gn
L and y ∈ BVn right-continuous on [a, b). The proof easily follows from the integration-

by-parts theorem for Kurzweil–Stieltjes integrals. Notice that this theorem can be slightly modified
as follows, cf. [1].

Theorem 4.1 (Integration by parts). Let f, g ∈ Gn and let at least one of them has a bounded
variation on [a, b]. Then

b∫
a

f∗(t−)d[g(t)] +
b∫

a

d[f∗(t)] g(t+) = f∗(b) g(b)− f∗(a) g(a),

where f(a−) = f(a) and g(b+) = g(b).

As a result, we can reformulate the Lagrange formula under less restrictive continuity require-
ments. To this aim consider operators

(Lx)(t) := x(t)− x(t0)−
t∫

t0

d[A(s)]x(s−) and (L∗ y)(t) := y∗(t)− y∗(t0)+

t∫
t0

y∗(s+)d[A(s)]

under the conventions

x(s−) = x(s) if s = min{t, t0} and y(s+) = y(s) if s = max{t, t0}

in the integrals. More exactly:

(Lx)(t) :=


x(t)− x(t0) +

t0∫
t

d[A(s)] (x(t)χ
[t]
(s) + x(s−)χ

(t,t0]
(s)) if t ≤ t0,

x(t)− x(t0)−
t∫

t0

d[A(s)] (x(t0)χ[t0]
(s) + x(s−)χ

(t0,t]
(s)) if t ≥ t0,

(L∗ y)(t) :=


y∗(t)− y∗(t0) +

t∫
t0

(y∗(s+)χ
[t,t0)

(s) + y∗(t0)χ[t0]
(s))d[A(s)] if t ≤ t0,

y∗(t)− y∗(t0)−
t0∫
t

(y∗(s+)χ
[t0,t)

(s) + y∗(t)χ
[t](s))d[A(s)] if t ≥ t0.

The related equations Lx = 0 and L∗ y = 0 are, of course, no longer generalized ODEs, but special
cases of Stieltjes integral equations. The modified version of the Lagrange identity, cf. [1], then
reads as follows:

Theorem 4.2 (Lagrange Identity). Let A ∈ BVn×n, x, y ∈ Gn, x(t−) = x(t) if t = min{t0, T}
and y(t+) = y(t) if t = max{t0, T}. Then for each t0 ∈ [a, b] and T ∈ [a, b] we have

T∫
t0

y∗(t+)d[(Lx)(t)] +

T∫
t0

d[(L∗ y)(t)]x(t−) = y∗(T )x(T )− y∗(t0)x(t0).

Remark 4.1. The above result no longer holds if we abandon the convention concerning the
endpoints.
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Corollary. If Lx = 0 and L∗ y = 0 on [a, b], then y∗ x is constant on [a, b].

In other words, the equations

x(t) = x(t0) +

t∫
t0

d[A(s)]x(s−) on [a, b], (E)

y∗(t) = y∗(t0)−
t∫

t0

y∗(s+)d[A(s)] on [a, b] (E∗)

can be considered to be mutually dual.

Remark 4.2. If we restrict to t0 = a, everything becomes considerably simpler. In particular, in
such a case we get

Lx = 0 on [a, b] =⇒ x(t−) =
[
I +∆−A(t)

]−1
x(t) if t ∈ (a, b] and det[I +∆−A(t)] 6= 0,

L∗ y = 0 on [a, b] =⇒ y∗(t+)=y∗(t)
[
I +∆A(t)

]−1
(I +∆−A(t))

if t ∈ [a, b) and det
[
I +∆A(t)

]
6=0.

Therefore, if det[I +∆−A(t)] 6= 0 and det[I +∆A(t)] 6= 0, then Lx = 0 if and only if

x(t) = x(a) +

t∫
a

d[K]x on [a, b], where K(s) =

s∫
a

d[A(τ)]
[
I +∆−A(τ)

]−1
.

Analogously, L∗ y = 0 if and only if

y∗(t) = y∗(a)−
t∫

a

y∗ d[L] on [a, b], where L(s) =

s∫
a

[I +∆A(τ)]−1
[
I +∆−A(τ)

]
d[A(τ)].

Concluding comments
The present contribution is closely related to the recent paper [1]. Some of its results have been
here extended from the scalar case to the n-dimensional case and functional analytical background
has been recalled. On the other hand, in [1] Stieltjes differential equations and dynamical equations
on time scale were considered. For more details, see [1]. To a large extent, the properties of the
Kurzweil-Stieltjes integral are utilized. For more details, see the monograph [2].
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Following [1], we give the definition of the local entropy that will be necessary in what follows.
Let X be a compact metric space with a metric d and f : X → X a continuous map. Along with
the original metric d, we define an additional system of metrics on X:

dfn(x, y) = max
0≤i≤n−1

d(f i(x), f i(y)), x, y ∈ X, n ∈ N,

where f i, i ∈ N, is the i-th iteration of f , f0 ≡ idX . Given a point x ∈ X, for any n ∈ N, r > 0
and ρ > 0, denote by Nd(f, r, n, x, ρ) the maximum number of points in the ball Bd(x, ρ) = {y ∈
X : d(x, y) < ρ}, pairwise dfn-distances between which are greater than r. Then the local entropy
of the mapping f at the point x is defined by the formula

hd(f, x) = lim
r→0

lim
ρ→0

lim
n→∞

1

n
lnNd(f, r, n, x, ρ).

Recall one more formula for calculating the local entropy. For any r, ρ > 0 and n ∈ N a set
A ⊂ Bd(x, ρ) is called an (f, r, n, x, ρ)-cover of the ball Bd(x, ρ), if for any point y ∈ Bd(x, ρ) there
is a point z ∈ A such that dfn(z, y) < r. Let Sd(f, r, n, x, ρ) denote the minimum number of elements
in an (f, r, n, x, ρ)-cover, then the local entropy can be calculated by the formula

hd(f, x) = lim
r→0

lim
ρ→0

lim
n→∞

1

n
lnSd(f, r, n, x, ρ). (1)

For a fixed continuous mapping f : X → X, consider the function

x 7→ hd(f, x). (2)

As the following example shows, function (2) can be discontinuous on the space X. Let X = [−1, 1]
and define a mapping f : X → X by

f(x) =

{
0, if x ∈ [−1, 0),

4x(1− x), if x ∈ [0, 1].

Then hd(f, x) = 0 for x ∈ [−1, 0) and hd(f, 0) = ln 2, hence function (2) has a discontinuity at zero.
Recall that continuous functions on a metric space M are called functions of the zeroth Baire

class, and for every natural number p, functions of the p-th Baire class are those that are pointwise
limits of sequences of functions in the (p− 1)-th class.

There are many, not equivalent to each other, interpretations as to which properties are typical
and which are not. Here we recall the notion of typicality introduced and studied by R.-L. Baire.
A property of a point in a topological space is called Baire typical if the set of points possessing
this property contains an everywhere dense Gδ-set.
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Theorem 1 ([2]). For any continuous mapping f : X → X, function (2) belongs to the second
Baire class and is lower semicontinuous at a Baire typical point of the space X.

Proof. Let us transform formula (1) to the form

hd(f, x) = lim
m→∞

lim
k→∞

lim
n→∞

1

n
lnSd

(
f,

1

m
,n, x,

1

k

)
, (3)

and for a fixed natural number m consider the function

x 7→ φm(x) = lim
k→∞

lim
n→∞

1

n
lnSd

(
f,

1

m
,n, x,

1

k

)
.

For any k > 0 and any point y ∈ Bd(x, 1/k), there exists lk > 0 such that for all l > lk the inclusion

Bd

(
y,

1

l

)
⊂ Bd

(
x,

1

k

)
holds, which implies the inequality

Sd

(
f,

1

m
,n, y,

1

l

)
6 Sd

(
f,

1

m
,n, x,

1

k

)
, m, n ∈ N.

Consequently,

lim
l→∞

lim
n→∞

1

n
lnSd

(
f,

1

m
,n, y,

1

l

)
6 lim

n→∞

1

n
lnSd

(
f,

1

m
,n, x,

1

k

)
.

Since the point y ∈ Bd(x, 1/k) is arbitrary, we obtain the inequality

sup
y∈Bd(x,1/k)

lim
l→∞

lim
n→∞

1

n
lnSd

(
f,

1

m
,n, y,

1

l

)
6 lim

n→∞

1

n
lnSd

(
f,

1

m
,n, x,

1

l

)
.

Passing in the last inequality to the limit as k → +∞, we obtain the inequality

lim
y→x

φm(x) 6 φm(x),

which establishes upper semicontinuity of the function x 7→ φm(x) at the point x. Hence the
function x 7→ φm(x) belongs to the first Baire class on the space X. Thus, from (3) we get the
following representation of the local entropy of the continuous mapping f at the point x:

hd(f, x) = lim
m→∞

φm(x), φ1(x) 6 φ2(x) 6 φ3(x) 6 · · · ,

which implies that the function x 7→ hd(f, x) belongs to the second Baire class on the space X.
By the Baire theorem on functions of the first class, for each m ∈ N, the set of points of

continuity Gm for the function x 7→ φm(x) is an everywhere dense Gδ-set. The intersection of all
Gm is again an everywhere dense set, each point of which is a point of continuity for all functions
x 7→ φm(x), m ∈ N. Let x ∈

∩
m∈N

Gm and ε > 0. By definition of the limit, φm(x) > hd(f, x) − ε

for all sufficiently large m. Fixing such m, find a neighborhood Bd(x, δ) of the point x such that
for every y ∈ Bd(x, δ) we have φm(y) > φm(x) − ε. Since the sequence (φm) is nondecreasing, it
follows that hd(f, y) > φm(y) for all y ∈ Bd(x, δ), hence φm(y) > hd(f, x)− 2ε. Therefore, at each
point of the set

∩
m∈N

Gm the function x 7→ hd(f, x) is lower semicontinuous.
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On the set of sequences x = (x1, x2, . . . ), xk ∈ {0, 1}, introduce a metric

dΩ2(x, y) =

0, if x = y,
1

min{i : xi 6= yi}
, if x 6= y.

The resulting compact metric space will be denoted by Ω2. Note that the space Ω2 is homeomorphic
to the Cantor set on the segment [0, 1] with the metric induced by the natural metric of the real
line.

Theorem 2 ([2]). If X = Ω2 × Ω2 with the metric

d
(
(x, α), (y, β)

)
= max

{
dΩ2(x, y), dΩ2(α, β)

}
,

then there is a continuous mapping f : X → X such that function (2) is everywhere discontinuous
and does not belong to the first Baire class on the space X.

Proof. Define a mapping f : Ω2 × Ω2 → Ω2 × Ω2 as follows:

f
(
(x1, x2, x3, . . . ), (α1, α2, α3, . . . )

)
=

(
(x1+α1 , x2+α2 , x3+α3 , . . . ), (α1, α2, α3, . . . )

)
.

Denote by P0 the set of sequences from Ω2 for which all but a finite number of terms are equal to
zero, and by P1 the set of sequences from Ω2 for which all but a finite number of terms are equal
to one.

Lemma 1. For any point (x, α) ∈ Ω2 × P0, the equality hd(f, (x, α)) = 0 is valid.

Proof. If (α1, α2, α3, . . . ) ∈ P0, then there is a natural number p0 such that αp = 0 for all p > p0.
Therefore, for any m > p0 and (y, β) ∈ Bd((x, α),

1
m+1),

f(y, β)

=
((

x1+α1 , . . . , xp0+αp0
, xp0 , . . . , xm, ym+1+βm+1 , ym+2+βm+2 , . . .

)
, (α1, . . . , αm, βm+1, . . . )

)
,

therefore dfn-distance between any two points of the ball Bd((x, α),
1

m+1) does not exceed 1
m+1 .

Thus, for any k > m we have
Nd

(
f,

1

m
,n, (x, α),

1

k

)
= 1,

and hence
hd(f, (x, α)) = 0.

Lemma 2. For any point (x, α) ∈ Ω2 × P1, the inequality hd(f, (x, α)) > ln 2 is valid.

Proof. If (α1, α2, α3, . . . ) ∈ P1, then there is a natural number p0 such that αp = 1 for all p > p0
and hence for any point (x, α) ∈ Ω2 × P1 we have the equality

f(x, α) =
(
(x1+α1 , . . . , xp0−1+αp0−1 , xp0+1, xp0+2, . . . ), α

)
.

In the ball Bd((x, α),
1
p) for each natural number n > p + 2, consider the set An,p of points of the

form (
(x1, . . . , xp, yp+1, . . . , yn, 0, 0, . . . ), α

)
, where yi ∈ {0, 1}, i = p+ 1, . . . , n.
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Since the dfn-distance between any two points from An,p is not less than 1
p+1 , then the quantity

Nd(f,
1
p , (x, α),

1
p) is at least the cardinality of the set An,p. Thus we have

hd(f, (x, α)) = lim
r→0

lim
p→∞

lim
n→∞

1

n
lnNd

(
f, r, n, (x, α),

1

p

)
> lim

p→∞
lim
n→∞

1

n
lnNd

(
f,

1

p0
, n, (x, α),

1

p

)
> lim

n→∞

(n− p) ln 2

n
= ln 2.

Completion of the proof of Theorem 2. Suppose that the function (x, α) 7→ hd(f, (x, α)) belongs to
the first Baire class on the space Ω2×Ω2, then, by the Baire theorem on functions of the first class,
in the space Ω2×Ω2 there must be points of continuity of the function (x, α) 7→ hd(f, (x, α). On the
other hand, the sets Ω2×P0 and Ω2×P1 are everywhere dense in the space Ω2×Ω2. Therefore, by
virtue of Lemmas 1 and 2, each point of the space Ω2 ×Ω2 is a discontinuity point of the function
(x, α) 7→ hd(f, (x, α)). Thus, the function (x, α) 7→ hd(f, (x, α)) is everywhere discontinuous and
does not belong to the first Baire class on the space Ω2 × Ω2.
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1 Introduction
The notion of quaternions that is a noncommutative extension of complex numbers is a mathemat-
ical concept introduced by Irish mathematician Hamilton in 1843 and it has been widely applied
to both pure and applied mathematics and physics. For instance, Adler studied the quaternionic
quantum mechanics and quantum fields in 1995 (see [1]). Since the quaternionic algebra has a
significant feature that its multiplication does not follow commutative law and it refers to ap-
plied dynamic equations (see [5–8]) and many mathematical and physical research fields, many
momentous studies based on quaternionic theory have been hot topics.

In 1998, Colombo and Sabadini studied the quaternionic functional calculus of Fueter-regular
function based on Cauchy formula (see [4]). In [2], by using the theory of S-spectrum, Cerejeiras
et al. studied the slice hyper-holomorphism of S-resolvent operator for the perturbation problem
of quaternionic normal operator in Hilbert space and the conditions to ensure the existence of
nontrivial hyper-invariant subspace of quaternionic linear operator were given. In the book [3],
Colombo et al. systematically presented the discovery of the S-spectrum and of the S-functional
calculus in the introduction and how hypercomplex analysis methods were used to identify the ap-
propriate notion of quaternionic spectrum whose existence was suggested by quaternionic quantum
mechanics. In 2022, based on S-spectral theory, Wang, Qin and Agarwal introduced the notion
of the quaternionic exponentially dichotomous operator and obtained its integral representation
formula.

2 Quaternionic exponentially dichotomous operators
In this section, we will present a notion of the quaternionic exponentially dichotomous operators of
the quaternionic version and some fundamental results which are important to discuss the quater-
nionic evolution equations. For more details, one may consult [9].

2.1 Quaternionic bisemigroups and direct sum decomposition of
quaternionic Banach space

Definition 2.1 ([9]). Let X be a quaternionic Banach space, by a (strongly continuous) bisemi-
group we mean a function E( · ) : R \ {0} → B(X) having the following properties:
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(1) If t, s > 0, we have E(t)E(s) = E(t+ s) and for t, s < 0 we have E(t)E(s) = −E(t+ s).

(2) For every x ∈ X the function E( · )x : R \ {0} → X is continuous, apart from a jump
discontinuity in t = 0. That is,

lim
t→0±

∥E(t)x− E(0±)x∥X = 0, x ∈ X.

(3) E(0+)x− E(0−)x = x for every x ∈ X.

(4) There exist M,λ > 0 such that ∥E(t)∥B(X) 6 Me−λ|t| for t ∈ R \ {0}.

From Definition 2.1, any quaternionic strongly continuous semigroup {E(t)}t>0 having a neg-
ative exponential growth bound extends to a uniformly continuous bisemigroup when defining
E(t) = 0B(X) for t < 0. Notice properties (1) and (3) in Definition 2.1, we can obtain the following
proposition.

Proposition 2.1 ([9]). Let {E(t)}t∈R\{0} be a strongly continuous bisemigroup and P = −E(0−),
then the following holds {

E(t)
[
KerP

]
⊂ KerP, t > 0,

E(t)
[
ImP

]
⊂ ImP, t < 0.

Proposition 2.1 implies that E(0+) and −E(0−) are bounded complementary, we may introduce
the concept of the constituent semigroup of a bisemigroup {E(t)}t∈R\{0} as follows.

Definition 2.2 ([9]). Let {E(t)}t∈R\{0} be a strongly continuous bisemigroup, then we call the
operator P = −E(0−) the separating projection of the bisemigroup {E(t)}t∈R\{0}. The restriction
of E(t) to KerP is a quaternionic strongly continuous semigroup on KerP , while the restriction of
−E(−t) to ImP is a strongly continuous semigroup on ImP . These two semigroups are called the
constituent semigroups of the bisemigroup {E(t)}t∈R\{0}.

Definition 2.2 indicates that we can describe the exponential growth bounds of {E(t)}t∈R\{0}
through the exponential growth bounds of its corresponding constituent semigroups, hence we
introduce the following notion.

Definition 2.3 ( [9]). Let Ej : [0,∞) → Xj(j = 1, 2) be the quaternionic strongly continuous
semigroups, and both have a negative exponential growth bound, we define the strongly continuous
bisemigroup {E(t)}t∈R\{0} on X = X1 ⊕X2 by

E(t) =

{
E1(t)⊕ 0X2 , t > 0,

0X1 ⊕
(
− E2(−t)

)
, t < 0,

which has {E1(t)}t>0 and {E2(t)}t>0 as its constituent semigroups. For the pair of exponential
growth bounds of a bisemigroup {E(t)}t∈R\{0}, we denote the pair of (necessarily negative) expo-
nential growth bounds of its constituent semigroups by:{

λ+(E), λ−(E)
}
.

For the exponential growth bound λ(E) of a bisemigroup {E(t)}t∈R\{0}, we denote it by

λ(E)
def
= max

{
λ−(E), λ+(E)

}
< 0.
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Definition 2.4 ([9]). Let T+(KerP → KerP ) and −T−(ImP → ImP ) stand for the infinitesimal
generators of the constituent semigroups of the bisemigroup {E(t)}t∈R\{0} on X, then the linear
quaternionic operator T (X → X) defined by

D(T ) =
{
x+ ⊕ x− : x+ ∈ D(T+), x− ∈ D(T−)

}
,

T (x+ ⊕ x−) = T+(x+)− T−(x−)

is called the (infinitesimal) generator of the bisemigroup {E(t)}t∈R\{0}, since T (X → X) is closed
and densely defined, then we define the constituent Laplace transform formulas as follows:

S−1
R (s, T+)x+ =

∞∫
0

e−stE(t)x+ dt, x+ ∈ KerP, Re(s) > λ+(E),

S−1
R (−s,−T−)x− = −

∞∫
0

estE(−t)x− dt, x− ∈ ImP, Re(−s) > λ−(E),

where both of λ±(E) < 0, which imply the Laplace transform formula

S−1
R (s, T )x =

∞∫
−∞

e−stE(t)x dt, λ+(E) < Re(s) < −λ−(E), (1)

where the (Bochner) integral converges absolutely in the norm of X. Now we will write E(t, T ) for
the strongly continuous bisemigroup with infinitesimal generator T .

Remark 2.1. From Definition 2.4, there exists a quaternionic district in the complex plane CI =
R + IR about the 2-dimensional sphere S contained in the S-resolvent set of the infinitesimal
generator T of {E(t)}t∈R\{0}.

2.2 Quaternionic exponentially dichotomous operators and
integral representation

We will present the concept of a quaternionic exponentially dichotomous operator.

Definition 2.5 ([9]). A closed and densely defined linear quaternionic operator T (X → X) on a
quaternionic Banach space X is called exponentially dichotomous if it is the infinitesimal generator
of a strongly continuous bisemigroup {E(t)}t∈R\{0} on X.

Proposition 2.2 ( [9]). Let X be an quaternionic Banach space, T (X → X) be an exponen-
tially dichotomous quaternionic operator. Then T has precisely one separating projection P of the
bisemigroup E(t, T ).

Definition 2.6 ([3]). Let T ∈ K(X) with ρS(T ) ∩ R ̸= ∅ and suppose that f ∈ RL
σ̄S(T ) (resp.

f ∈ RR
σ̄S(T )). Let us consider k ∈ R and the function Φ : H → H defined by p = Φ(s) = (s− k)−1,

Φ(∞) = 0, Φ(k) = ∞. Now consider

ϕ(p) := f(Φ−1(p))

and the bounded linear operator defined by

A := (T − kI)−1 for some k ∈ ρS(T ) ∩ R.

We define, in both cases, the operator f(T ) as

f(T ) = ϕ(A). (2)
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Now we introduce the following slice symmetric domain of the quaternionic Banach space.

Definition 2.7 ([9]). We define a slice symmetric domain Dη+Iξ
η−Iξ as follows:

Dη+Iξ
η−Iξ :=

{
s ∈ CI : Re(s) = η, I ∈ S, |Im(s)| 6 ξ

}
.

Moreover, if ξ = ∞, we denote the ∞-symmetric domain by Dη+I∞
η−I∞.

To present an integral representation for the separating projection P , we established the fol-
lowing lemma.

Lemma 2.1 ([9]). Let Ψ(X → X) be a closed linear quaternionic operator on the two-side quater-
nionic Banach space X such that ρS(Ψ) ∩ R ̸= ∅ and assume that σS(Ψ) ⊂ {s ∈ H : Re(s) > η},
where η is some positive real number. Let f ∈ RR

σS(Ψ) and CI = R + IR for any I ∈ S, Φ and ϕ
are the same as in Definition 2.6. Then

f(Ψ)x =
1

2π

∮
γη

ϕ(p) dpIS
−1
R (p,A)x, x ∈ D(Ψ2),

where A = (Ψ − kI)−1 with k ∈ ρS(Ψ) ∩ R such that |k| < η, p = Φ(s), γη = {s ∈ CI :
|s− (η− k)−1/2| = (η− k)−1/2} and whenever x ∈ D(Ψ2) and S−1

R (s,Ψ) is bounded on Re(s) 6 η.

Theorem 2.1 ([9]). Let T (X → X) be a quaternionic exponentially dichotomous operator such
that ρS(T )∩R ̸= ∅ and suppose the exponential growth bound λ(E) < 0, and let P be its separating
projection, Φ, p and A are as in Definition 2.6. Then

Px =
1

2π

∮
γη

dpIS
−1
R (p,A)x, x ∈ D(T 2), (3)

where dpI = dp/I, |k| < η < −λ(E) and γη, k, η are as in Lemma 2.1.

Remark 2.2. Let E(t, T ) be a bisemigroup, for any k ∈ ρS(T ) ∩ R and |η| < λ(E), noticing that
Φ
(
Dη+I∞

η−I∞
)

is a circle with the center p0 = Φ(η)/2 and radius (η − k)−1/2, we denote it by γη.
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