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THE INFLUEN
EXPOSURE ON TH

OF PRELIMINARY NONPOLARIZED
PHOTOANISOTROPY OF MORDANT
AZODYES

G. Kakauridze, V. Shaverdova

Accepted for publication January, 2002

T. The influence of nonpolarized preillumination on
otropy of media on the basis of Mordant azodyes in
polimeric matrix has been cxperimentally investigated. It is shown
that such tion on the material increases the value of
photoanisotropic sensitivity and also the absolute value of
photoanisotropic parameters. The possible mechanizm of influence
of nonpolarized preillumination has been discussed.

The interest in polarization-sensitive media for the tasks of optical
information storage and processing has recently increased. From this
point of view the increase of the sensitivity of polarization-sensitive
media is rather a task of current interest

Quite a number of  polarization-scnsitive media with different
mechanisms of the induction of anisotropy are known [1-4]. The media
on the basis of organic dyes have quite a number of advantages: high
resolution power, comparatively high light sensitivity. Among the
investigated dyes mordant azodyes have turned out.to be the most
effective [5]. The chemical-technological optimization of media made
carlier on the basis of mordant azodyes resulted in the essential
increase of both light sensitivity and parameters of photoanisotropy.
The matrix turned out to play an essential role under otherwise equal
conditions. The carried out experiments have shown that the matrix on
the basis of polyvinylpyrrolidone (PVP) with molecular mass M =
35000 is the most effective to achicve maximum values of

and also i sensitivity [6.7].

In this work the influence of the preliminary exposure by
nonpolarized light that arc actinic wavelengths for the given media is
being investigated in order to find out the possibility of further increase
of photoanisotropic sensitivity in media on the basis of mordant
azodyes.




The investigations were carried out on the samples with the dyes
Mordant Pure Yellow (MPY) and specially synthesized dye with
additional methyl group in a meta-position to azo-group (MPYM) [8]
introduced into PVP matrix with M = 35000. The concentration of the
dyes was 0.01 mol / I, concentration of PVP - 5 %; the thickness of the
samples measured on a microinterferometer MAM-10 was ~ 8.5
microns.

The preliminary non-polarized exposure was made by radiation of
He-Cd laser JIT-62 (b = 441.6 m). The power range of exposure was
2.6 - 54 J/en” and as experiments have shown exposure ~ 25 Jcnm®
tumed out to be optimal. In order to receive exposure dependence
A4y =/(H) the samples were cxposed by polarized radiation of He-

Cd laser JIT-70 (. = 441.6 nm) in exposure range 0.22 — 220 J/cnr’.
‘The anisotropy that appears in the medium was estimated by means

of the parameter introduced into the work [9) - effective anisotropy

A, which is an anisotropic invariant of Johnes matrix of the medium

which is numerically equal to the transmission of the sample under
investigation placed between crossed polarizers at the angle of 45°
between the axis of anisotropy and the axis of transmission of one of
the polarizers. Measurements 4, were made on the modified
spectrophotometer CP-4A on the wavelength of the spectral maximum
of photoanisotropy — 535 nm discovered earlier (9]

Fig. 1 shows the family of exposure curves for the dyes MPY and
MPYM in PVP matrix: curve 1 - for sample MPY without
preexposure, curve 2 - for the similar sample after preexposure; curve
3 _ for the sample MPYM without preexposure, curve 4 — after
preexposure. As we sce from the Figure the precxposure by
nonpolarized light for both dyes results in the increase of
photoanisotropy.

From the above-mentioned exposure curves the values of
polarization sensitivity of the material have been calculated.
Polarization sensitivity is defined as the value which is inverse to
exposure and which is necessary to achieve effective anisotropy that
exceeds the original level by a predetermined value with the criterion
of polarization sensitivity which is equal to 0.2 [9]
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Fig.1. Exposure dependenice A,
without preexposure;
preexposure.

jg H (Ofcn) for the dye MPY and MPYM: curve 1 - for the dye MPY.
after preexposure; 3 — for the dye MPYM without precxposur f




The following results have been received. For the dye MPY in PVP:
matrix without prc]lmln’\n exposure the polarization sensitivity is
equal t0 7.7 cm*/J and after preexposure - 11.1 cm?/J._For the dye
MPYM in PVP matrix thhom preexposure — 9.1 cm’/J and after
preexposure — 12.5 cms

Thus the preliminary exposurc by non-polarized actinic light
results in the increase of photoanisotropic sensitivity by ~ 1.5 times.
Besides as we see from the exposure curves the absolute value A,

also increases in all exposurc interval.

The increase of photoanisotropic sensitivity and absolute
maximums of photoanisotropy in the samples that are sensitized by
non-polarized exposure can be explained as follows. It is known, that
the which is for the of anisotropy
in the dyes is fonal trans-cis i with
the appearance of intermediate cissoid forms with their further directed
orientation by the polarized light. The preliminary non-polarized
exposure by wavelengths that are actinic for the given dyes may be
presumed to transfer a certain part of molecules from trans into cissoid
forms as though preparing the material for further orientation during
subsequent polarized exposure. In this casc the energy of polarized
radiation is mainly spent on the orientation of alrcady available cissoid
forms. Thus the preliminary cxposwre by non-polarized radiation
permits photoanisotropic sensitivity to be essentially increased and
thereby the exposure by polarized radiation to be reduced.
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PHOTOANISOTROPY IN MEDIA ON THE BASIS OF
ISOMERIC DYES METANILIC YELLOW AND
TROPEOLIN 00

G. Kakauridze, V. Shaverdova
Accepted for publication January, 2002

ABSTRACT. Photoanisotropy of media on the basis of
isomeric monoazodyes Metanilic yellow and Tropeolin 00
introduced into different polymeric matrices has been investigated.
It is shown that the material on the basis of the dye Tropcolin 00 in
PVP matrix with molecular mass 35000 has great photoanisotropic
sensitivity compared with other discussed dyes and matrices. The
influence of structural factors of molecular structure of dyes and
their possible complex formation with PVP matrix on the value of
photoanisotropic sensitivity is discussed.

Polarization-sensitive media which can fix the distribution of
polarization of the exposing light beam have been used more often
lately for optical information storing, coding and processing (1,2]

The method of polarization sensitometry [3] which enables
complex and complex circular birefringence of the anisotropic sample
1o be defined has been developed to quantitatively describe anisotropy
induced by polarized light. Tn order 'to make necessary calculations
from 4 up to 8 transmission ‘measurements of a differently oriented
sample placed between parallel and crossed polarizers are required
Though this procedure gives the fullest description of anisotropy and
permits the vector scalar reaction of the medium [3] to be calculated
t00, its use for investigating the induction kinetics and relaxation of
photoanisotropy is hindered as it does not allow measurements to be
made in the real scale of time.

The characteristic called effective anisotropy A, introduced in the

work [4] allows to describe photoinduced anisotropy with the help of
one measurement and is a modulus of anisotropic invariant of Johnes
matrix of the medium:
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where  kd(z) * characterizes average absorption -of the ‘medium,

kdnre) is dichroism and kdAn bircfringence of the medium. The

anisotropic invariant is numerically equal to the transmission of

the sample under investigation placed between the crossed polarizers
when the angle between the axis of the induced anisotropy and the axis
of transmission of one of the polarizers is equal to 45°. It follows from
the - above-mentioned | expression for A, that _ this magnitude

characterizes the joint contribution of dichroism, ‘birefringence  and
sealar absorption (o the induced anisotropy of the sample. The use of
A,y enables anisotropy to be induced and its parameters to be measured
simultancously and also the materials to be compared with different
mechanisms of the induction of photoanisotropy:

In this work this method' of sensitometry is used to investigate
photoanisotropy in the miedia on the basis of isomeric  azodyes
Metanilic yellow and Tropeolin 00 introduced into different polymeric
matrices: 1o gelatine, nitrocellulose, polyvinylpyrrolidone  with
molecular Imss M = 12500 and M = 35000. The concentration of dyes
was 1.6 x 102 mol /1, the concentration of polymers = 5 %.

The measurements of A, were made in the real scale of time with

the help of a photometric scheme in which the photoanisotropy in the
sample was induced by He-Cd laser light (1 = 441.6 nm) with power
12 mi¥ and at the same time 4, was measured with the help of the

probing, beam of the He-Ne laser (1 = 632.8 m) with power 2 m#.
The polarization plane of the probing beam made an angle 45° with the.
polarization plane of the illuminating beam. Both beams were
perpendicularly incident on one and the same area of the sample.

Having passed through the sample the beams were divided by a
prism, in that'case the illuminating beam reached a photoresistor. the
signal. from which was given on one of  the channels of the quick~
operating  recording device ‘H: 338-6T1 and the - probing: beam was



incident on the polarizer whose transmission axis made an angle of 90
with the initial direction of the polarization of that beam.

The preliminary experiments have shown, that the gyrotropy in all
the samples is very small and we can think the axis of the induced
anisotropy does not turn round and coincides with the direction of the
polarization of an actinic beam.

In case the sample is isotropic the polarizer does not transmit the
probing beam. When anisotropy is induced the probing beam passes
through the polarizer and riches the second photoresistor the signal
from which is given on the other channel of the device H 338-6IT
Another channel of this device served as a time marker. Encrgy density
was calculated according to exposure duration and polarization
exposure curves were plotted.

Fig. 1 shows the curves of exposure dependence A, = /(Hy) for
the dye Metanilic yellow in different matrices: in nitrocellulose - curve
1, in gelatine- curve 2, in polyvinylpyrrolidone with M = 12500 - curve
3, in polyvinylpyrrolidone with M = 35000 - curve 4; the curves 5 and
6 are exposure curves for Tropeolin 00 in matrix polyvinylpyrrolidone
M = 12500 and in polyvinylpyrrolidone with M = 35000. Exposure
range was 0.048 - 2.2 Jion that permitted the saturation A, to be
achieved for all the samples. The maximum value A, ~ 27 % was
received for the medium on the basis of dye Metanilic yellow in
polyvinylpyrrolidone matrix with M = 35000

Photoanisotropic sensitivity was calculated for the samples under
investigation according to these curves. According to (4]
photoanisotropic sensitivity is defined as the value which is inverse to
the exposure necessary to achicve 4, exceeding the initial level O on
a definite value Q.. called the criterion of photoanisotropic sensitivity

5=Hogu. 7 0=ledy,

Qs = 03 is usually iaccepted which is due to:the sensitivity
threshold of most of the devices and Q.= 0.2. Such a description of
photoanisotropic sensitivity allows ‘photoanisotropic materials to. be
compared with different mechanisms of induction of anisotropy.

10
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Fig.1. The family of the curves of exposure dependence A, = f (H,):
curye 1 ~ for the dye Metanilic yellow in nitrocellulose matrix,
2 - in gelatine matrix, 3 — in PV matrix (M = 12500), 4 — in
PVP matrix (M = 35000); 5 — for dye Tropeolin 00 in. PVP.
matrix (M = 12500), 6 — in PVP matrix (M= 135000).



The following values of photoanisotropic sensitivity have'been
reccived for the media on the basis of dye Metanilic yellow:
nitrocellulose matrix - cm®/J. in gelatin matrix - 7.4 em’/J,
in polyvinylpyrrolidone with M = 12500 - 6.7 c and in
polyvinylpyrrolidone with M = 35000 - S = 18.1 cm’/J.

For the media on the basis of the dyc Tropeolin 00: in
polyvinylpyrrolidone matrix with M = 12500 - $= 33.3 cm?J and in
polyvinylpyrrolidone with M = 35000 - S = 200 cm™J.

Gradients of the growth of anisotropy g on lincar areas of the
curves have also been determined. The determination of the gradient of
the growth of anisotropy was introduced in [5] as the ratio of increment
A, to that interval of energy exposures during which this increment
took place: g=AA/AH .

The calculation of the gradient gave the following results: for the
dye Metanilic yellow in nitrocellulose matrix - g = 8.9, in gelatin
matrix - g = 11.45, in pu]yvmylpynohdone 12500 - g = 22.9 and in
polyvinylpyrrolidone 35000 - g =

For Tropeolin 00 in polyvmy]py(mhdonc 12500 - g = 40 and in
polyvinylpyrrolidone 35000 - g = 85

For comparison we shall give the maximum values A,

photoanisotropic sensitivity and the gradient of the growth of
anisotropy for the photoanisotropic material investigated carlier on the
basis of the dye Mordant pure yellow in the matrix
polyvinylpyrrolidone 35000: A~ 60:% (with much bigger exposures
~ 17.5 Jlen®), S=3.4 cm’/J, g~ 12.2 [4]

The carried out investigation has shown, that though in the media
on the basis of isomeric dyes Metanilic yellow and Tropeolin 00 we do
not succeed in achicving high values of the induced effective
anisotropy, the sensitivity of such media is great, especially for
Tropeolin 00. It should be especially noted the essential role of the
polymer matrix when the molecular mass of one and the same polymer
can change photoanisotropic sensitivity almost by an order.

It is known, that the mechanism of the induction of
photoanisotropy in these azo dyes is trans-cis isomerization and
Metanilic yellow differs from Tropeolin 00 only by the location of
sulphonic-acid group.

12
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Conscquently we can suppose that in the investigated materials
there appears a complex: dye + polyvinylpyrrolidone matrix and high
values of photoanisotropic sensitivity received for the dye Tropeolin
00 are duc to the p-location of sulphonic-acid group that facilitates the
s of the running of photoreaction.

The detailed study of the ‘mechamisms of the “induction  of
photoanisotropy depending on' molecular structures of the dye and the
matrix and also the investigation of darkish relaxation are supposed to
be carried out later on.

pr
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THE DEGREE OF LIGHT POLARIZATION
IN NONSTATIONARY PROCESSES

A. Purtseladze

Accepted for publication February, 2002

ABSTRACT. The model consideration of the des
polatization state of light is reccived when fully polarized light
passed through a nonstationary anisotropic device is presented.
In this case fully polarized light becomes partially polarized. Tt is
shown that the degree of the polarization of light is immediately
connected with the time profile of nonstationary process.

As is known partially polarized radiation is obtained from
nonpolarized during reflection or scattering [1]. The reception of
partially polarized radiation as a result of passing of originally fully
polarized light through the nonstationary device was first
investigated in [2,3]. In this. work the, further development of: this
approach is made for the nonstationary, device, the coefficient of
birefringence of which sinusoidaly changes in time.

The model polarization device is presented in the form of a
mediom single thickness (for the simplicity of further discussion)
with a birefringent cocfficient An = n, - n, (1, n, are the value of n
coefficient according to the respective axes) and the orientation of
the axis of anisotropy p. If An and p are sufficiently quick
functions of time and with this  + 7, with sufficient accuracy can
be accepted as independent of time, then the model device turns out
to be nonstationary. Such a device causes depolarization of the fully
polarized wave front and the field of the transmitted wave
immediately after the device becomes partially polarized. The degree
of light polarization  connected with the time profile of the
nonstationary process can be presented as [2]:
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where @, :71 (A~ is the length in a general case of an elliptically
o

polarized wave coming on the device), 7” is the time of observation.
As an example of a nonstationary model polarization device let
us choose the law of time change in the following form:

ne+n, =2n,

@
M()=n,sinat,  pl)=k,

where @ is a cyclic frequency of the device, n, and k are
characteristics of the model. Thus we have:
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J, is the Bessel function of the first kind of zero order (4]
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J., is the function of Anger v order [4].

Substituting the received integrals into (4) we shall finally
receive:
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We can show according to (3] that
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In this case taking into consideration
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We shall receive from (8)

L

min[ V]~

0,0 1 1
=42 (04)+-(-02)--02{=03.
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Thus for the model:

03 <V<l (10)



The similar results can be reccived in the approach “of
geometrical optics, when %, — 0. According to [4,5]

)~ 1-——005('\,»1 +% g}%o;

\ ma

consequently for the degree of polarization we shall have from (8)

Vzl[lﬁ‘“‘”‘,’—], 1)
Pl

where using (9) we have:
04 V<,

which does not contradict (10).

Both in general case (8) and in the approach of ‘geometrical
optics (1) in case of final 7' the device is stationary when & = 0,
then it is evident ¥/ = 1 and the polarization device does not influence
the degree of polarization of radiation.

Thus, the described method of the definition of the degree of
partial polarization of light can be used for any device if the time
profile of its nonstationarity is known. The inverse problem can also
be considered ~ the definition of the kind of device's nonstationarity:
in case of full depolarization of light, which has passed through the.
device which is supposed to be carried out in future



Acknowledement, The author is grateful to [Sh. Kakichashill
for the working of the task and helpful discussions

REFERENCES

M.Bom, E.Wolf. Principles of Optics. 1973. (Russian)
Sh. Kakichashvili. The Journal of Technical Physics, 65, 1995
200 (Russian)

Sh. Kakichashvili, A. Purtseladze. Letter to Jounal of Technical
Physics, 25, 1999, 74 (Russian).

E Yanke, F.Emde, F.Lesh. Special Functions. 1977, 342
(Russian).

Mathematical Encyclopedia. 1, 1977, 1152 (Russian)

IS

o

Georgian Academy of Sciences
Institute of Cybernetics

> GG

s 3300l baholibo sGliad(
3agligddo

@lygs

BBmaGmdge doffyo-
TGooel

Faconeay
e e 97
oo Bjegaoe  Bomgdymo  ggmob  measadsgools
Begmdsmymdal sefigob Bmegemyto gsbbocegs. 38 Bgdobgggs
Ugmse  dmestoBgbyemo  boBoonmy  bregds - Gaformdtiogeg
JomatoBgbgmo.  Gbggbbas, G oBsmeals  Immaiadagools
batholbo JBgsmene SsbgdsomBatima  IGmaglgdals | @Bmac
Itmoresh ol @235380Bgbgn.



DYNAMICS OF ATMOSPHERIC PROCESSES AND
THEIR ROLE IN ECOLOGICAL PROBLEMS OF GEORGIA

Z. Khvedclidze, 1. Aladashvili, T. Shalamberidze,
E. Tagvadze, R . Chakv:

Accepted for publication March, 2002

Any regional microclimate is determined by
common atmospheric circulation and Earth “radiative” surface
conditions. The microclimate peculiarity considering certain
factors is studied in the w and influence of seasonal stability
par of relief and processes is taken into account. The rate
of the air purification from bad admixtures and self purification
period for some regions of Georgia are evaluated.

Modem civilization faces urgent problem of today. Tt includes
study and analysis of ecological situations of scparate regions of
Georgia. It is well-known, that eccological or meteorological
phenomena of the given region are caused primarily by the general
long-scale circulation of air. This motion forms  the background
magnitudes of different value variation. Disturbances brought about
by the local, thermal and orography reasons arc added continuously to
it. The events of these types are observed basically in the meso-scale
boundary layer of the atmosphere (10-100 km).

Based' on the above-mentioned, the dynamics of atmospheric
processes should be studied with the consideration of physical and
geographical features of a certain region. It is important to determine
the leading factors that develop a process and evaluate their roles
[1,2,6].

For realization of the stated problem we used a system of hydro-
thermodynamic equations, which describes the regional atmospheric
processes. Because of the small scales of the region, we assume that
the effect of the Coriolis force can be! omitted, and also dp/ét is not
lakcn mlo account as its variation in tm\e is -insignificant. - After

cring the obtained for 1 proc the indicated
system takes the following form [4,5.8]:
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where %, v, w are the components of wind velocity along ¥, J, z
coordinate axis accordingly, £ ~ time, p - density, p — pressure, £ - the
coefficient of turbulence on the horizontal plane, k¥ - coefficient of
turbulence along z axis, B - parameter of buoyancy, T — absolute
temperature, © - potential temperature, q — specific humidity, A -
parameter of stability, - heat flux, o =& RTYR

, R - gas universal

constant, g ~ free fall acceleration, m — water vapor mass, 7 - vertical
gradient of temperature, A - Laplace flat transform.

In any meso-meteorological problem the quantitics characterizing
the main state are considered being already known (so-called
background magnitudes). The shape of relief and heterogencity of the
surface temperature have to be given too. By means of solving



cquations, the disturbances from the major state are found and then,
added to the background magnitudes =

The meso-meteorological problems based on the above-pointed
(1) - (6) equation system include the! studies of air strcamlining
around the mountain, local wind, the induced' convection in the
boundary layer. The physical and ‘gcographical conditions of the
different regions of Georgia give the ability to eliminate the terms
with turbulence in (1) — (6) system, and consider air internal friction
by bringing in a special term.

While researching the dynamic processes we used the standard
method of obtaining well-known equation for the vertical component
of vortex velocity from the equations (1) and (2), [2.4]

aQ, + /)
e s O D
»

~/D, @

where @, =~ % £ is Coriolis parameter and D flat divergence

of velocity.

Let 1 = P,/P, be a parameter that characterizes earth relief, where
P, is the magnitude of atmospheric pressure on the mountain surface,
and P, standard magnitude of pressure on the sea level. Then the wind
velocity components could yield [3,7]:

o dov 1w o
N oy M ox

Here  is a current function. Then the vertical component of velocity
takes the following form [7]:
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where a and b=-

3l 6
onmn, are the parameters of  the
o

alan)
g
mountain influence along longitude and latitude, accordingly.

Let us assume, that the friction at the Earth’s surface is directly
proportional to the vortex velocity, or to the variation of the current
function along the latitude or longitude. Thus, after considering all
these the above stated equation (7) can be rewritten so:

*;;(A\ll +ay, +by, )+ kv, = £y ay) - /(. lnn), (10)

where the expression (A,B) is a Poisson’s parentheses.
Next, we try to get the solution of the equation (10) in the form of

wave:
= el remet) a

where m and » are wave numbers, E, amplitude and o frequency.

Now, let us discuss the two cases of friction impact and make an
attempt to find corresponding phase velocity [5,8]: a) friction is
proportional to Qo, so Fr =kQz, and then putting (11) into (10) yields
the following expression:

_[fna = mb) ~ (am + br)k Ip? +p k(am + bn) i
o+ (am +bn)?

[f(na=mb) (am + bn)k](am +bn) ~p*k
p' +(am-+bn)’

1 +i0, (12)

where

‘The parameter characterizing relief and the wave numbers must satisfy
the condition:
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am + bn=0 (13)

a4

Considering it, the real part of the phase velocity depends only on (am
- bn) combination and the virtual part of it relies on the friction
coefficient and the ratio of the wave number k/m toward leading flux.
This dependence is obtained for the first time and gives good
opportunity to study dynamics of micro-regional processes. The only’
thing is to know the magnitudes of a and b parameters and the wave
numbers of current region

b) Friction coefficient is proportional to the derivative of current
function along the latitude: Fy, =k, . Then for the frequency we
would have:

o = fna=mb) kymlp?
o'+ (am +bn)

< tna =) pl(am br)

=03 +i0, 15)
o+ (am+bn)? i)

f@t=b)-k
e
P

()

Now consider the waves of the neutral type. Their existence is
observed on Transcaucasian territory. [3,5,6]. In this case C = 0 and
friction cocfficient is determined from (16):

n
la=lf=ilt= -0 17)




We have got quite strange, but very important result: air intemal
friction coefficicnt is defined by the parameters characterizing the
mountain in the given region and with the corresponding wave
numbers.

The validity of the obtained results was tested for Mengrelia. Nine
meteorological stations were selected and all meteorological quantities
were taken for the past 10 years.

The a and b parameters were estimated by consideration of the
physical and eeographical conditions of the region (Table 1).

Table 1
g o Relief parameters
Locations e g £ 72
§§ 5}’ £ [a(10%Um | b(109)Vm
Zugdidi 18 0| % 020
| Gali 48 %952 |
ki e OO | | 2t
Kutsis 300 970 |
Zugdidi 80 (023 |
Kobudi 5 9995
Zugddi | 32 03
Senaki | % %72
Zughdi | 40 =R 0l
Poi | 3 9997
Zugia | 29 008
Lebarda 1610 89
Zugdd | 60 010
Martvll 70 %3
B0 140 %6 | 010
S““‘K A !———
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It appeared that @ and b parameters did not change significantly ~
along difforent directions in the region (center Zugdidi). It confifms
the fact that the region is valley with small hills without gorges. The
air phase velocity is low, but exists constantly because it is caused by
the sea and land thermal radiation [2,6].

According to the definition of wave numbers from (13) it follows:

(18)

which means that the air mass along the latitude expands 1.5 times
longer than along the longitude. These kinds of processes are observed
in operational practice.

Thus, the prolongation along the latitude observed during synoptic
processes was proved theoretically. For this region it was done for the
first ime.

To make phasc velocity of synoptic waves C # 0, it is necessary
according to (17) to fulfil the condition (am = bn) # 0. Actually; this
condition fulfils. The expression (am - bn) is not large. It is about
(0.005-0.4) m/sec, but never equals to zero. If the length of the wave
would be considered being congruent to the sizes of region along the
longitude and latitude  (Lx 500 km and Ly = 160 km
correspondingly), then C = 0.059 m/sec.

For displaying the microclimatic featurcs caused by dynamics of
the mentioned atmospheric processes by applying the data from the
selected meteorological stations the correlative relationships between
different elements could be determined. The correlation coefficients
for the pairs of different meteorological elements on the same stations
and the same elements on the different stations were calculated (Table
23).

The data fmm the Table show ﬂm the region is characunzed by
similar of the clements. This
indicates at the ecological alert. Pollution coefficients of ait and soil
are distributed evenly across the whole region and their alteration in
time and space occurs at a low rate.

Indeed, from the equation describing the diffusion of an admixture
(stationary case), we have [1,5]:
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Table 2. Correlation coefficient for temperature

= 1Bl
R =S
3

0561 | 071 | 0.7 6
055 3 | 0. 7
087 7 [ 0. 92

1 .93 |0 46|
093 0. 096 |
081 [ 083 | 1 | 078 |
0.46 [ 0.96 [ 078 | 1

Table3. Correlation coefficient for temperature according to the

seasons
S el BE ol = s
rooefficient | % [ £ | £ il a2
SRS 2
Zugdidi 093 | 0.96 | 0.93 | 0.93 | 0.94 | 0.94
(warm period)
Zugdidi 099 | 097 | 0.98 | 0.88 [ 0.98 | 0.99
(cold period) e

&

u%(wu%‘xﬁ]

¥

where q is relative concentration of an admixture, h(x) — shape of
relief, Z'=Z - h(x)is a new coordinate.

It follows that for small magnitudes of u and w the stationary
regime is retained for a long time. So, the period of self-clarification
of air s prolonged significantly.



The scasonal characteristics of atmospheric processes’ dynamics.
was also calculated

(1)

It appeared that A parameter was altered according to the warm
and cold seasons. But during the scason its magnitude remained
stable

The calculations were done for the several regions of Georgia on
the basis of the data for the period of 1990 — 2000 (Table 4). The
magnitudes of A parameter given in the Table 4 show clearly the
repetition of warm and cold periods with high accuracy. A parameter
is new and requires more testing for another periods too.

Table 4. Magnitude of A according to seasons

scasons | 1990 | 1991 [ 1992 [ 1993 [ 1994 [ 1995 | 1996
(warm 11 11 13 12 12 12 12
period)

(cold | 32 | 30 | 39 | 48 | 38 | 34 | 31
| period)

It is possible to draw a conclusion for the region of Mengrelia:
both factors determining microclimate, general circulative processes
and physical state of ground surface provide the stability of the
atmospheric processes.
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PHOTOINDUCED ANISOTROPY IN SELENO-CADMIUM
GLASS

L.Tarasashvili

Accepted for publication April, 2002

ABSTRACT. Anisotropic change of the absorbtion edge of
seleno-cadmium glass under the action of linearly polarized
monoimpulse of a ruby laser of great power has been investigated.
Th spectral width of the area of anisotropic bleaching of the
sample which s being radiated has been estimated. The dispersion
curyes of and the anisotropy of the
absorbtion on the absorbtion edge of the glass of RY-19 type have
been obtained in the interval (6500-6700) A.

The of it and in
different light-sensitive media have been actively used lately in the
tasks of polarization holography and mfannauon processing [1-4]
The of the can be the most
various ~ connected both  with photcd\cm:cal and photophysical
transformations of molecules under the action of actinic radiation and
with non-linearly optical phenomena. In the latter there are a lot of
possibilities for different manifestations of vector effects in
photophysical processes [5-8]. Anisotropic non-incar bleaching of
seleno-cadmium glass BY-19 under the action of linearly polarised
monopulse of a ruby laser of different power on. the wayelength of

actinic radiation (A= 6943 A ) has been discovered and investigated
in [9). On the other hand, it has been estimated that the area of
bleaching is not limited to the line width of laser radiation, but it
covers a rather broad area of the self-absorbtion edge of glass RY-19
[10]. On this basis of finding out the nature of non-lincar, anisotropic
processes, which take place in the seleno-cadmium glass, demands a
certain spectral width of the arca of anisotropic bleaching of the:
sammple which is being radiated.

In this work the spectral width of the area of anizotropic bleaching
of glass'RY-19 has been measured for the first time. Besides,
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dispersion curves of light-induced birefringence An have: becn
received in it and of anisotropy of absorbtion Anzon long-wave
edge absorbtion of the seleno-cadmium glass in spectral range (650 —
750) nm.

The schemes of the experimental installation for defining the
spectral arca of anisotropic bleaching and measuring light-enduced
birefrigence and anisotropy of absorption on different wave lengths
are given in Fig.1.

A sample of glass RY-191, which was formed into a shape of a
cube with optically polished faces was exposed to radiation by a
lincarly-polarized monopulse of ruby laser 2 with power ~ 6. The
vibration plane of lincarly polarized laser light is oriented in the
direction perpendicular to the drawing. A quarts haloid lamp KTM
24X300 3 that provided the constanse of the light flux in the inte;
of wave length under investigation was used for probing. The probing
beam passes through polarizer 4, gets into the entrance slit of
monochromator MJII1-45, then through Fresnel's rhomb 6 into
polarizer 7, passes through sample 1 and polarizer 8 after which it is
detected by device DIY-629. The recording of signals is made on the
screen of two-beam storing oscillograph 10. The system of polarizer
7.8 is oriented parallel and was able to rotate as a whole taking the
desired position with respect to effective vector of an exciting beam;
parallel at an angle of 45° and perpendicularly. The system from
polarizer 4 and Fresnel's rhomb 6 was used to exclude polarization
distortions of the device on a probing beam. The absorption
coefficient of the sample at any stage of bleaching is calculated from
the formula k=k, —~1/dInl, /T,, where k, is an absorption
coefficient for weak light fluxes; k is the same for fluxes of great
intensity (the value average by ten measurements); 1; and L, are the
intensities of the radiations which passed through the sample,
corresponding to values k and ko; d is the thickness of the sample;
coefficient k, was determined earlier on spectrophotometer C®-10.
The amplitudes of impulses on the screen of the oscillograph were
used as I; and L, while calculating. The dispersion curves of
photoinduced' birefringence An: and anisotropy. of absorption Ant
on the edge of the absorption of seleno-cadmium glass RY-19 in
spectral range (650 - 750) nm (n is a refractive index, 7is an
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Fig,2. Dispersion curves of the anisotropic characteristics of
3 the exposed sample




extinction coefficient) are given in Fig.2. The investigated sample had

the thickness d = 3 mm. The valucs of anizotropic characteristics have

been calculated by means of operating relations [11].

445 —(Tg +1gg) Al In Iy
A 2224 lgp
The analysis of the dispersion curves of anisotropic characteristics

of the sample which is exposed to radiation given in Fig.2 shows that

the location of the spectral area of anisotropic bleaching coincides
with the spectral area of changing edge absorbtion RY-19; the degree
of induced anizotropy for different wave length are not the same. The
maximum meaning of anisotropy is observed near an cxitation wave
length (A =694 .3nm). On the wave length shorter than A=694.3 nm
bleaching of the sample hasn't been detected (at the given power of the
monopulse). The obtained results confirm the supposition made in [9]
that the observed anisotropy in scleno-cadmium glasses is caused by
the anisotropy. of microcrystals CdSc; on the other hand, the
discussion of the question of the spectral arca of non-linear bleaching
is connected with the choice of a concrete energy scheme for a glass
with impurities (CdS and CdCe) of microcrystals having
semiconductive nature [10] introduced into its matrix. A glass matrix
is as it is known an amorphous formation. Nevertheless to describe
physical phenomena in glasses we more often refer to the zone theory
of semiconductive connections [12-14]. Starting from the usability of
the zone model the obtained trend of the dispersion curves of induced

anisotropy can be interpreted like this: As is known in case of a

condensed phase only electrons having a certain position i the

absorbtion process of radiation. As the quantum energy radiated by a

ruby lasers 1.78 €V, in this case the absorption is due to clectrons

which occupy permitted: positions in the upper part of the: valence
band ~ 0.07 eV in the energy interval. The smaller their number, the
closer the frequency of the acting quanta to the main absorption edge

of the substance [12]. As a result of this it can be expected that a

noticeable anisotropic change of an: absorption coefficient will take

place in the spectral region between the absorption edge: of .the
substance and the frequency of incident radiation. While moving away
towards big frequences the amount of the change of the absorption

an=2Larccos
2nd
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cocfficient, and therefore the anisotropy of absorption decreases:
Complete bleaching comes only when 4> /1.

In conclusion we shall note that in order to make a comprehensive
study of spectral properties of anisotropic bleaching of seleno-
cadmium glasses it is necessary to measure the encrgies of actinic
{lumination in a wider range. Such analysis can be of practical
interest particularly in the tasks of creating polarization correctors and
speedy reversal polarization holographic memory [13,14].
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DIFFRACTION RADIATION OF AN ELECTRON FLOW
MOVING ABOVE THE SCREEN WITH SLOTS

L Sil ili, Z. Sil ili, O.Tsag:

Accept for publication May,2002

ABSTRACT. The problem of diffraction of an internal field of
moving electron flow on a perfor |led screen of final width is being
solved.  The q theor: of
radiation is constructed and phyucal interpretation is given on the
basis of numerical results.

Let us assume that parallel with surface of a boundless perforated
sereen (Fig.1) the monochromatic clectronic flow with constant speed
is moving and instantaneous value of a density of charge is the
following;

p=pod(z—g)explih(a;x +a,y) - ot], ()]




where pq is amplitude modulation of elcctronic flow; @-frequency of
modulation; h = k/p:
space velocity; ¥

= o/c; B = Vie relative velocity of flow; ¢ free
,); 8(z-L) is Dirace function;
1); ¢ is aiming distance; %,.%,

ay,a are direction cosine (o +ou”
basis vector of coordinat system.

Field source represented by (1) is a real model for investigation of
initiated diffraction radiation [1]

The sought field in a space is represented as a superposition of
falling and reflected waves of concrete sectors, as a double Fourier
line with certain unknown coefficients (The field over the screen Z>0)
is represented as a superposition of internal field of charges and field,
scattered on a perforated screen):

=H{ +A DA, expy(xy,2)
m=-

$—A Y Bh epY(x,y,2)
Pl

(2>0)
@
Hf=/\ ZZEMOXP(P(X,W);
Ei =A ZB expp(x,y,2);
e
(Z<-S)
HE S AY S8 00T Y 0L (1, )
FI Pg=0 3)
A3 SOl e VIR ()
1 pa=0

02Z>8).



=ilhpx+hyy thonz) Qe =itipxs
by =hoy +2mm/d 5 h, = hoy + 27/l

—h,2-h,2; the constant A=(poc/2

wexp|— (C/BIWIZPZ.). entered. s a. matter., of. convemence
i ]

calculations; ¥ k?; e a relative permittivity of

i
environment inside holes; k. cigenvalues; and - @} ¢ (5,%,Y),

v
(e

configuration . is a geometrical size (the index j = 1 corresponds to

) fundamental functions of wave guides correspond of the

waves E of a type, and j =2 to waves H of a type); E® and H vectors
of an intemal field of moving charges; Ay, Ay, i, Bh, Xby, Yoy
unknown coefficients which are being a subject of definition

ying boundary conditions on a surface of metal (planes z = 0
S), leads to the functional ~equations,  which  may be
transformed, by means of moment method, to the following infinite
linear algebraic systems of pair equations.

[poitGutis, 3 (0012, +D222)

i @
]lP Zioythnto=to D) (DD, +DOZ, )=

where.

7=

.




20, 20.
V=2 o0, VIR =25 (=B

the remaining values are identical to expressions conducted in [2-5]

Having conducted rescarch of matrix elements and free members
(4) and having convinced in quadratic convergence in space of Hilbert
I we conclude that the equations are Fredholm type and are solved by
method of a reduction.

Determining unknown cocfficients of a problem, we build relation
of a flow of power of a spatial harmonic from @ single site of a sereen
(IT,.) from and electrical

2 g2 s 2
T —-—JLEE:B—)OXP{—%:{-Z“QM -2 O

where Jois a line density of a current; Zo an environmental wave
resistance;

2
nm=[1+h7'“]<
hmn

(* - complex conjugate value).

Numerical computation was carried out for rectangular slots. On
the basis of these numerical data the analysis of physical features of
diffraction radiation is conducted.

The Fig2 illustrates cxponential decrease of a radiation energy
with increase of the distance between electronic stream and lattice. As
it is visible from a figure, starting from the value § = Gy/A = 0.1 the
radiation becomes practically unobscrvable.

In Fig3 the dependence of Ry on the specd of the beam B=v/c is
presented. The continuous line defines areas of meaning, where the

A"1
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condition of radiation is carried out for the data m, n, %. The dotted
line defines areas, where this condition is not carried out. In all cases

o Ry
009} N

Fig2

the diffraction radiation disappears, when the speed of a flow
approaches to the speed of light. As is known [1] currents inducing
radiation undergo Lorenze reduction and aspires to zero at p — 1.

From Figs. 4-5 where the dependence of factor Ry as a function of
geometrical parameters of a lattice 8 and 6 is presented obvious, that
the radiating power is periodic function of the depth of lattice. The
characteristic resonance takes place, when the depth of lattice is
approximately multiple k/2y "

In Fig6 the dependence Ry on parameter % (frequency of
fluctuation), at the fixed depth of the sorecn and various meanings of
factor of filling is given. The substantial growth of capacity of
radiation as a result of a choice of appropriate depth of lattice is
appreciable only at width of slots, smaller than half-cycle of structure.
The sharp change of intensity of radiation in a neighborhood of
meanings is observed

e Infp — fmp ——3(6)
VB~ a tBlinl oy B (e +nBla) oy
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mi= L2 =

: 2,...) which is connected to the resonant
pl\cnorncna similar to Wood anomalies. The formula. (6) precisely
predicts conditions, at which the Wood anomalies in diffraction
radiation take place.
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ON MODELING OF THE DIURNAL VARIATION OF THE
COEFFICIENT OF COMPUTATION OF TILT SOUNDING
FROM VERTICAL SOUNDING OF [ONOSPHERE

K.Tukhashvili, V. Kandashvili, J. Mdinaradze
Accepted for publication May,2002

ABSTRACT. A method of modeling of the diurnal variation of
parameter M (3000) F2 has been developed. The method has been
tested by the use of the data of lonospheric Digital Database of the
National Geophysical Data Center (NGDC), Boulder, Colorado,
USA, namely, the data of Juliusruh - (¢p=54.5° N). The type of the
parameter dependence on solar activity has been studied and a
model of diurnal variation of the median values in January has
been made. The model is uniquely dependent on F10.7 allowing
prediction of M (3000) F2. The method permits to make models
for any point of the Earth (where the measurements are carried
out during several cycles of solar activity) for every month.

INTRODUCTION.

Due to peculiarities of propagation of short waves the problem of
computation and projection of radio-communication line is different
for short waves compared to the problem posed for long and medium
waves. For computations within the diapason of long and medium:
waves the problem is to define the length of the most advantageous
Wave, necessary transmitting power and necessary type of transmitting
antenna. In many cases the sought values are found by means of
solution of one mathematical problem as the above-said values are in a
certain relation with one another.

Working within the diapason of short waves, first of all, it should
be taken into consideration that it is necessary to use several waves for
diumal communication. Besides, due to absorption of radio waves
independently of the transmitter power there exists the most
advantageous wave for any diurnal period. On the one hand this factor
makes computations  easier, since the most advantageous wave is



defined independently from the transmitting power, and on the other
hand, it is necessary to choose several waves while only one operating
wave is enough to work on long and medium waves. Besides, it is
necessary to know the time of change from one wave to another
Situation is complicated as annual minimal number of total waves is
necessary to be taken into consideration. Besides, the reserve waves
are necessary because of variation of solar activity.

Thus, for designing the short-wave radio-communication line it is
necessary to define the most advantageous annual number of total
waves and the time of change from one wave to another to have a
diurnal communication [1].

lonosphere layers E and F2 have special functions in propagation
of spatial short waves in normal conditions: in such a casc layer E is
an absorber, and layer F2 - the reflector. The diagram of propagation
of radio waves is given in Fig.1

Fig. 1. The trajectory of radio waves while propagation of short radio
waves in normal conditions

Analysis of Fig. 1 gives ground to conclude that in"normal
conditions concentration of ‘electrons in the'E layer is not enough to
reflect the short waves. Besides, absorption of short waves while
reflection from the F2 is less than while penetration E layer: on the
ground: of a wellknown exporimental fact daytime concentration of
electrons in F2 is about 10-times more than in E layer [1].

It should be noted that while propagation in real conditions short
waves are absorbed not ‘only. in E layer but also in lower part of the
ionosphere - in D area. In such conditions the absorption coefficient
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does not change inversely proportional of frequency square  but
frequency increase causes ' reduction of absorption ~cocfficient

Absorption of radio waves in ionosphere must be taken into
account to choose the working frequency. The more the frequency the
less the absorption, but we are limited from above by critical
frequency of the reflective layer. For prognosis (while reflection from
F2 layer) of maximum applicable frequency (MAF) it is necessary to
predict two parameters: critical frequency of F2-layer - foF2and the
coefficient of computation of tilt sounding M (3000) F2 = M3

It is necessary to know two values to compute MAF in reflection
from F2-layer: MAF of F2-0 and MAF of F2-4000 defining MAF on
routes 0 and 4000, respectively (4000 km — maximum distance of one
reflection).

F2-0-MAF =/, F2+1/2f; (1)
F2-4 000 MAF = 17.8 [(F2-3000-MAF)~(F2-0-MAF)] /14.75 +
+(F2-0-MAF), [©)

where  (F2-3000-MAF)=/;F2* M3000)F2 and fy is a Larmor
frequency [2]

The parameters of F2-layer have a very complex spatial and time
distribution, which cannot be given by a simple formula. Therefore,
until the recent time the prognosis of F2 and M3 was done by means
of handwork of numerous graphical materials. Development of the
methods of computational mathematics and wide use of computers
allows automation of this labor-consuming work. On this purpose it
has become necessary to develop a method of analytical description of
complex. spatial variations  allowing computation of the: values of
parameters of F2-layer for any point of the Earth for any period of
time. One of such methods was. developed in USA in 1962 [3]./ In
1973 Chernishev and' Vasileva in the USSR developed an analogous
method. This method of analytical description of planctary distribution
of ionosphere, parameters is based on the spherical harmonics method
of analysis, where solar activity is considered as follows: in:the first
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volume the prognosis is made for solar activity, when Wolf's number.
W=10, in the next three volumes W=50, 100 and 150, respectively [2]

The main goal of the study of the structure of upper atmosphere is
to define variation of atmosphere parameters according to height and
time. To find the causes of variation of the upper atmosphere it is
ary to describe it by model. Therefore, one of the main
ons of investigations by means. of rockets and satellites is to
make its model [4]

An empirical and statistical planctary model of monthly median
values used at present for long-term prognosis of radio communication
conditions (¢.g. CCIR [3] and “MAF prognosis” [2]) is based on the
dependence of 12-month smoothed value (Ryz) of sunspots and f,F2
But some works [6-8] show that application of ionospheres permits to
obtain more t approximation of f,F2 dependence on. solar
activity. In [9] it is shown that application of GSSN (global sunspot
number) instead of R;» permits to increase the exactness of prognosis:
six month earlier — by 11%, a year earlier — by 18%. According to the
authors of [7] it is quite prospective to tum to ionosphere indices for
long-term proguosis.

Tn the USSR the “MAF prognosis” [2] was used for long-term
prognosis, which differs from the international CCIR in the volume of
used experimental material as well as in the method of its
construction. Therefore, direct application of a “strange” ionosphere
index for the model might be incffective, though in [10] it is partially
shown, that the change of R by GSSN pemits to increase the
precision of modeled description of median values of f,F2  Standard
method of R prognostication is given in [11]. Besides, deviation of
£,F2 prognosis in daytie is ~20% [12].

The method of modeling, of the diumal variation of f,F2
deseribed in [13) is ‘quite different from the previous methods. It is
uniquely dependent on the solar activity parameter (F10.7). By means
of this method the dependence of the values of fyF2 on F10.7
changes according to zenith angle of the Sun'and it is necessary to
solve an cquation for cvery hour, but computer can do it casily. As
shown in [13], precision of f,F2 ‘prognostication a few years earlier is
lesser than 10% for any hour of the day.

49



In the present work a model of M3 diumal variation has. been
made in analogous method. These two models allow the prediction”of
f,F2 and M3, which is necessary for MAF prognosis.

EXPERIMENTAL RESULTS

Data obtained by German station (Julrub, ¢ = 54.38° N) in 1958~
1986 have been used as in [13].
Table 1.

Monthly median values of M(3 000)F2 and F10.7
Julruh, January.
Hour F10.7
Wear. OBBSINE 2/l < S iiai02 11123

1958 235 235 230 248 240 243
1959 250 245 245 260 258 266
*
*
*
1986 295 300 305 310 300 71

Parameter M3 in a fixed point of current month depends on the
solar activity as well as on the Sun’s zenith angle i.c. on local time T -
M3(F10.7;T). To study the M3 dependence on F10.7 it is necessary to
fix T in current month. On this purpose all the data should be arranged
as given in Table 1. The terminal column of the Table represents the
relevant value of F10.7. Each line of the Table shows diurnal variation
of median values of M3 in January of the given year. The Sun’s zenith
angle for each column of the Table is constant permitting to study
mutual relation between M3 and'solar activity. This relation is given
by the fanction

- M3=A+B* F10.7 @)

 Fig, 2 shows the graph of M3 dependence on E10.7 for 12°UT.
Linear analysis is carried out in the program of “Origin 6.1”.
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Correlation parameter R appears to be rather high. Fig.2 shows that
increasing the solar activity, M3 dccrcases, which maybe caused by
encrease of the height of reflected layer [14]. Only two points are at
F10.7>200 and at low activity there are comparatively more points.
Therefore, deviation in M3 prognostication will b more for the year
of high solar activity. Using the data of the period as longer as
ible for modeling provides more precise prognosis. Dependence
for cach hour is lincar but the parameters of the linc are different. Fig,
3 shows diurnal variation of R (cocfficient correlation between (3) line
and experimental points). Great changes in that variation coincide
with the moments of sunrise and sunset in that latitude. Collection of
statistical data will allow in-depth study of this effect.

20 Linear Regression for Data1_B:
Y=

Parameter Value Ermor
A 38326255 319372
B 038626 002211

095849
o 30
g
& 20
= >

00 .

20 .

£ 100 150 200 20 0
F107*107W!m?]

Fig. 2. Dependence between M3 and F10.7 for January, 12" Julruh.

For modeling it is necessary to compute M3 for every i-th hour by
means of the following formula:
M3;=A;+B, * F10.7
Fig4 shows the model of diumal variation of M3 for quiet
(B,F10.7=70) and active (C, F 10.7 =250) Sun.




Juiruh
January

Correlation coefficient (-10°)

M(3 000)F2

o 5 10 15 20 25
ut

Fig. 4 Diumal variation M3 for quict (F10.7=70; ( B)) and
active (F10.7=250; (C)) sun. Julrub, January.



As noted above, the material collected up to 1986 have been.
used to make a model. Prognosis can be done for 1987(i.e. a
year earlier). Deviation of predicted values of M3 from the real
one does no exceed 5% for any hour.

Fig.5 shows rcal (B) and predicted (C) diurnal variation of M3 for
January 1987. The variations are found to be rather similar and Fig.6
shiows how precise they are,

(3 000)F2

[ H o D e
ut

Fig. 5. Diurnal variation of M3 for 1987 year (experimental (B) and
prognosis (C) values). Julrub, January.

3800 Lnear Regression or Daw1_& i
YIRS

s70d | Puameter Vae Eno: Z

M(3 000)F2 model

30 sl 330 370

BT T
M(3 000)F2 real

Fig. 6. Comparison of proghosis (model) and cxpetimental (rcal)




The coefficient of correlation between the real and predicted M3 is
over 0.98 indicating rather high accuracy.

Fig7 shows variation of the coefficient of correlation between
experimental and predicted values of M3 according to solar activity.
The increase of activity causes the decrease of R. As noted above, it is
mainly due to insufficient data on high activity while modeling. Only
two points arc F10.7>200, thereforc, it is expectable that the prognosis
of high activity will be of low accuracy. In 1989 and 1990 years
F10.7>200, therefore, both correlation coefficient and accuracy was
low - average deviation was 15% and 17%, respectively. In 1987 and
1988 deviation was 2% and 7%, respectively.
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Fig. 7. Dependence of correlation coefficient on the sun’s activity.
Julruh, January.

THE INFERENCES

A method of modeling of the diurnal. variation of parameter
M(3000)F2 has been developed. The M(3000)F2 dependence on
F10.7 has been studied. It has been established that the increase of
F10.7 linearly decreases M(3000)E2, which might be caused by
i



increase of /1,2 Coefficients of the line change according to the
Sun’s zenith angle. Coefficients of correlation between the line and
experimental monthly median data are high in daytime. Deviation of
the prognosis for high activity is 15-17%. It is mainly due to
insufficient data on high activity while modeling
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ANTHROPOGENIC EFFECT ON NATURAL PROCESSES
AND ITS STUDY USING RADIOCARBON METHOD

S.Tsereteli, V.Bochorishvili, M. i M, radze

Accepted for publication April, 2002

ABSTRACT. On the basis of radiocarbon concentration
measurement data in the Earth’s atmosphere we have determined
the value of Suess effect using three different methods. The
obtained results within the admissible error are in good
agreement with each other.

From the end of the 19" century parallel with the development of
the Industrial Revolution the decrease (illusory decrease) of
atmospheric radiocarbon concentration is noted, which is the result of

fossils The effect on the
natural processes and the decrease of the atmospheric radiocarbon
concentration were experimentally studied for the first time by Suess
[1] and thercfore this phenomenon is kniown as Suess effect.

For today there have been already ‘existed numerous factors which
allow to account in detail all these phenomena which make an action
on Suess cffect:

a) Radiocarbon concentration for 1850-1940 has been determined
with great preciseness (0.2 0.3)% in wood rings [2] which
makes casy the study of radiocarbon fluctuations unlike other
works [3] where only averaged values of radiocarbon
concentration are considered.

b) As a result of many-years stratospheric observations [4] half
empiric dependence between cosmic rays and the parameters of
solar activity-is ‘obtained

10 =Lewp[-An’*g 2] (0)

where (?) is the intensity of galactic cosmic rays for / time moment; Io
denotes the intensity of unmodulated flux of cosmic rays; 1 is the
number of the groups of the Sun’s spots and ¢ is their heliographic
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latitude, A is the constant multiplier. Thus there appearcd the
possibility to study more thoroughly the dependence of radiocarbon
concentration on time in the mentioned period. While investigating
Suess effect with the help of cxperimental data of radiocarbon
concentration for the first time it becomes possible to exclude from
them such significant factor as solar activity.

The Suess effect makes possible to study more thoroughly the
geochemical processes proceeding  with the participation —of

which helps the. ists to date morc accurately
this or that sample using radiocarbon method, etc.

The study of Suess effect is of particular significance for
climatology because the raise of anthropogenic carbon dioxide action
on climate becomes more and more noticeable [5].

The present paper aims to determine the value of Suess effect
using different known methods on the basis of experimental data
obtained at the laboratory of nuclear researches of the Tbilisi State
University.

1.Radiocarbon method. Historically using this very method there
was found the dilution of atmospheric radiocarbon with industrial
€O, The difficulty of this approach is that it is impossible to
determine just with the measurements the "*C concentration existed
before the industrialization. Therefore the Suess effect is calculated as
the difference between the measured series of the '*C concentration
and the level of radiocarbon concentration of 1850. Then the data are
approximated by the least-square method.

2.Cosmophysical method. This method gives the possibility to
determine the value of Suess effect more accurately using annual
measurements  of radiocarbon. As. was mentioned above the
depcndencc of cosmic rays intensity on the parameter of solar activity
is given by half empiric formula (1).

If we consider that (1) equality took place in the past too we can
exclude modulated influence of solar activity from experimental
radiocarbon series and obtain ‘pure’ image of Suess effect. For this it
is necessary to calculate: the velocity of “C formation in the Earth’s
atmosphere from formula

1(02-50g)=385 Q" o)



and variation (5 *C) of its concentration, which is calculated using
five reservoir model of "“C “redistribution” [4]. If we subtract the
calculated value from radiocarbon experimental series we ‘get the
value of Suess effect.

3. Industrial method. This method is based on the evaluation of
the injected industrial carbon content. For this there arc used statistical
data on the production amount of various fuels determined by the
United Nations Organization. In this model it is also necessary to take
into consideration the effect of carbonic gas flux in other spheres
(ocean, biosphere, ctc.) on its concentration in the atmosphere (3].

We have determined the value of Suess effect by radiocarbon
method based on the data from [2] (Fig.1 fine dashed line)

At the same time we have modificated radiocarbon method in
order to exclude modulated action of solar activity: linear
approximation of data from carlier period of Suess effect by the least-
square method (Fig.1, firm dashed lin¢). We assume that in the period
of Suess effect action modulated solar effect was denoted by the same
line and from the obtained result we subtract approximated line in the
period of Suess effect (Fig.1, continuous linc).

Altc%

1850 1360 1870 180 1890 1900 ‘1910 1920 1930 1340

Fig.1.



The results were compared with the lines obtained by the above
mentioned methods. It should be noted that according to our- rescarch-
the value of Sucss effect made ~ (2.4%0.35) % for 1940.

10
dc%

00

1650 1900 1910 1920 1930 years

rediocarbon thermal cosmophysical

--~ standerd XXX o

+++ modificaled i1 ‘bandofemors
Fig2.

As is seen (Fig.2) these methods within the experimental error
evaluate the value of Suess cffect. This proves the validity of three
‘methods and the rightness of the calculations made by us.
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EQUATIONS OF MOTION FOR SUPERFLUID He® - He!
SOLUTIONS FILLED POROUS MEDIA
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ABSTRACT. The theory of the deformation of porous elastic
solid containing a compressible superfluid He' has been considered
in earlier publication. In the present paper, hypothetic experiments
of measurement are described for the determination of the elastic
coefficients of the theory. We aim at extending classical theory for
the case when the porous media is saturated with superfluid
He’ —He' mixture. Finally, derived equations are applied to the
most important particular case when the normal fluid component is
locked i
that in highly porous media there exist two' longit
modes: one is the intermediate mode between the ﬁrst and fourth
sound and another is the second sound like mode:

1. INTRODUCTION

We consider the case, when impurities participate only in normal
fluid flow [1]. Sound propagation in a superfluid He’ ~He' solution
has a number of peculiarities connected with the oscillation of the He®
concentration in the acoustic wave, Whercas in pure helium II only the
pressure oscillates in the first sound wave, and only the temperaturc
oscillates in the second sound wave (neglecting the coefficient of
thermal expansion, which is enormously small foz hclmm) in a solution
there are pressure, and ions in both
waves. In the first sound wave the oscillation of the temperature is

proportionallto\tho cocicicat (= (c/p)’;i and in the second sound
5

wave the same coefficient is proportional to the pressure oscillation (c-
maximum He® concentration, p - density of the solution), and at low
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He® concentration the quantities proportional to B cannot be neglected
(B = -0.3-0.4 for highly concentrated solutions). Unlike pure He®, the
first sound wave in solutions contains a relative oscillation of the
normal and superfluid liquids, the magnitude of which is proportional
to B. In pure He, there are no oscillations of the total flux
J=p"V"+p*V" in the second sound wave, whereas in the solution
the deviation from the equilibrium value of J is also proportional to B
[1]. On the other hand when acrogel is saturated even with pure He II
new phenomena are caused by the presence of aerogel: namely, the
coupling between two sound modes is provided by op“p®(p® -is the
acrogel density, o-He’-He' solution entropy) [2]. So, in this paper
we have considered the peculiarities of sound propagation for impure

uperfluids, where these are caused by both
impurities (including He® in He 1) and by the presence of acrogel. The
task of the article represents the derivation of hydrodynamic equations
for consolidated porous media filled with superfluid He’ —He*
solution and determination of all input elastic coefficients of the theory
by physically measured quantitis without any additional adjustable
parameters.

EXPRESSION OF GENERALIZED COEFFICIENTS BY
PHYSICALLY MEASURED QUANTITIES

The clastic properties of a system containing a superfluid helium

completely ﬁllu\g the pores were considered in (3], where methods for

i clastic are described with

jacketed and unjackcted compressibility tests in the case of a

homogeneous and isotropic porous matrix. In our case according to [3,
4,5] the stress-strain relations are

o, =2Ne, +Ae+Q%*+Q"",
6, =2Ne, +Ae+Q%*+Q""




o, =2Ne, +Ae+Q%%+Q"%",

7, =Nr,, %, =Ny, &, =Nr,. ()

s'=Q%+R % +R ™",
§7=QUe+R "R "ES,

where 6,,0,,G, and 7,,7,,7, are nomal and tangential forces acting
on the solid parts of cach face of the cube with the following
orientation, s’ and 5" arc forces acting on the solution part of cach
face of the cube corresponding to superfluid and normal components of
superfluid solution. Scalars s’ and s” are expressed in the following
form

'=-0p°, s"=-0p". @)

Here p*=pSp, p>+p”=p [6), where p is chemical potential, p -
liquid pressure and ® - porosity. Thus, we have taken into
consideration the circumstance that the existonce of pressure gradient is
not enough for acceleration of superfluid and normal components of
superfluid liquid unlike usual fluid.

The average displacement vector of the solid has the components
u,,u,.u, and that of the mixture U3, U5, U5 UL UG UL, The

solid strain components are then given by

B Ty ey
®)
1_5“, du, du,  0u, 7_‘7‘& du,
N7 Oy U oD WoxihET oy ox

Due to two possible types of motion in He II U breaks down into
the sum of two parts



(OF

corresponding to displacement of superfluid and normal components.
Thus the strain in fluid is defined by the dilatation

VUL yyn ©)
3

P

ise of the fact that superfluid and normal part of He II cannot be
divided physically and there is no sensc to speak about belonging of
some atoms to superfluid or normal components, the following relation
is to be fulfilled

Q% *+Q"%"=Qe ©)
The ients A and N to the well- Lame

coefficients in the theory of elasticity and are positive. The coefficients
Qand R are the familiar Biot's coefficients [7). The physical

interpretation of the coefficients R, R*, R™ is given in [1,5].

To illustrate the above mentioned let us 'discuss some cases of
experiments which may be used to relate generalized elastic coefficicnts
of the theory to the directly measurable coefficients: the bulk modulus
of fluid K., the bulk modulus of solid K, the bulk modulus of the
skeletal frame K, and N .

For clear determination we note, that in the unjacketed
compressibility experiment, a sample of the porous solid'is immersed in
a superfluid He® —He solution to which a pressure' p' is applied
Under - the action of pressure the solution penetrates the pores
completely and the dilations of the porous solid'e and solutions € are
measured. Unjacketed elastic cocfficients of solid and fluid are
determined by
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Also we note, that from expression of the solution chemical potential
we have the form of the force acting on the superfluid component and
normal component portions;

s
o'=-0P(148)p’
P

a"= »mi[ ®)
P
After considering these conditions € *
( N+A] +(Q+Q" ]7_(1—&1:)
©)

+(R™+R")

The following test corresponds to the jacketed compressibility test,
when a specimen of the material is enclosed in a thin impermeable
jacket and then subjected to an extemnal fluid pressure’ p’. The
dilatation of the specimen is measured and coefficient of jacketed
compressibility K, is determined by

1

10)



and also we have relations

Therefore we have the three relations

(

N

.\'+AJ¢+( Q%+Q ")54

Qsm( R®+R ’")a =0,

Qre+( R™R ")e

From (9) and (12) it follows

K,
K
3

K,
KK

: (1».<|>)[|,m_k5»,]+m']‘(a!
FN+A=K — = £

b

K,
JE@ED=2
KRS

s lod) )

RS+R*= K,%[@—kQ:] (1+B).

((B))

12)

(13)

14)

(15)

(16)
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Let us consider the situation when the jacket is communicated with
reservoir by the superleak. Thercfore only superfluid component pours
into rescrvoir and we can write the following relations:

2
({N+A] c+Q%*+Q "e"=~(1-D)p’
3
Q%e+R%%R™e"=0, 17)
Q"e+R""+R “s%=—0p’
In this compressibility test we have not the relation betwecn € * and

& For its determination we should utilize the conservation laws of
mass and entropy. Then we have

(13)

‘where

The quantity Z =p(u, ) is defined in terms of the chemical
potentials ., for He? and He* in the solution.
These equations (17-183) together with (13-16) give:

[ )R_(s)lﬂ, 19

P Cu

R"=




(20)
() (
P P
Ri==L (14B) 2R+ 12— — 1)
) P Cy.
Where Biot-Willis coefficient R is equal to 7]
2
R ) f”’ 22)
1-O+ et
K/ K\vl

and C,,,

Equations for clastic waves are reccived by analogy with articles
[1.5), expressing stress tensor through strain tensor. = For  three-
dimensional cases we can write:

is the specific heat of the solution

NV?ii+(A +N)grade +Q grade *+ Q "grade "=
o P e e
o SUp U™ | +b (w)aT u-U" |,
o 82 - -
ngmdcrR“gmdes+R’“grz\dE"=F[pf2u+pszUs].
Q"grade + Rgrade "+ R"grad e °=

0 (el b @
S phu+ps U —bF(w)—a; u-U (23)
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where p,, is total effective density of the solid moving in
the He® -He* solution. Coefficients pf, and pl, arc mass parameters
of “coupling” between a solid and correspondingly, superfluid and
normal components of solution or mass cocfficient p "’ describes the
inertial (as opposed to viscous) drag that the fluid cxerts on the solid as
the latter is accelerated relative to the former and vice-versa.

It is well known, that the He’-He" solution densities have the
following form [1,5]:

P =Pp =P =Pis PR =Pp" —ph Pl
—Ph>0, -pp>0
Complex quantity F(w) describes the deviation from Poiseille flow
at finite frequencies. The coefficient b=n® /K, is the ratio of total

friction force to the average normal fluid velocity, where 1 is the fluid
viscosity and &, is the permeability.

SOUND PROPAGATION IN UNRESTRICTED GEOMETRY
AND AEROGEL.

Now it will be interesting to ignore dissipative process in equations
(20) and consider the case of unrestricted geometry. Then from
equations (23) we have

2
R grads ™+ R® grad "= p° 22

G

9%u"

R"grade’+R™ grade *=p" 57 (24)



Here we take into account that in the limit interest to us purely:
geometrical quantity oy, which is independently of solid or fluid
densities, and porosity @ are equal to one. Because the induced mass

tensor per unit volume p " =~ (at, ~1) ®p*® and
()T
P Cu

N s\ager

B J K,+(p ) (25)
P Cuc

s\2

o
PCu.

So, for pure  He’ - He' solution solving the system (24) in the
usual manner we obtain the dispersion equation for the bulk waves
propagating in free  He® -He! solution

Clip%pt - C{(p*R"+p"R® ) +R*R*~(R")*=0 (@26
Equation (26) has two roots
o [e1)

which conform to the velocity of the first and the second sounds
correspondingly (8]

From (24) equations it follows the well known results for the fourth
sound in freo. He® -He! solutions [3]. If we assume U =0 in (21), we
derive [9,10]

(1+p) c;( 1+22p2 ) 8)
Blpr P 3
5




Propagation of the fourth sound in a He® -He* solution was studied in
[9.10] from the hydrodynamic equations.

A great deal of effort has recently been dedicated to the
investigation of superfluid solution in porous materials. We cite here
recent articles describing the specific features of superfluid liquid in
various porous structures [11]. The sound velocity in porous media can
provide information about the superfluidity property as well as elastic
properties of the solid matrix. McKenna ct al [12] developed a theory
explaining the behavior of sound modes in aerogel filled with He II,
taking into account coupling between the normal component and the
aerogel and its elasticity. Here the normal component is locked in a
very compliant solid matrix so that the liquid and acrogel fibers move
together under mechanical and thermal gradients. It takes place at low
sound frequencies, when the viscous penctration depth in bigger than
the pore size so the entire normal component is viscously locked to the
solid matrix. In this case from (23) for longitudinal waves we have the
following dispersion equation:

polp° +p™)IC - C2[R(p +p) +p°(A+2N+2Q+R) =20 x
X(Q +R° +R™)]+ R3(A +2N +2Q +R) - (Q +R® +R™)* =0 (29)
The bulk velocitics can express this dispersion equation:

)c'—cz(c\u(n%p?]cy% (cci)p+

WO € 30)
P

(43N
o
The first solution'is intermediate between the first and fourth
sound

(CarEEGe
&= ()
l+p~‘=

and it resembles the fast mode.
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Another solution corresponds to the slow mode, which is an
oscillation of a deformation of the acrogel combined with a
simultaneous out-of-phase motion of the superfluid component
cubllocicl

_ o'

14 2P
PP

In ‘this wave the main oscillated quantity is temperature. From
experiment data for silica acrogel C2>>C3 [12], so from the above

mentioned formula it follows that C2,>>C? Therefore, the velocity
of slow wave is much bigger than that of temperature sound in free
solutions
From (31) and (32) it follows that an aerogel filled with superfluid
He® -He" solution simultancously possesses the properties of elastic
solid and superfluid liquid. Also, in this paper we have considered the
of sound for impure
superfluids, where these phenomena arc caused both by impurities
(including He® in He I1) and by the presence of aerogel
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THE DISSOCIATIVE EXCITATION PROCESSES IN
COLLISIONS OF ELECTRONS AND HELIUM IONS WITH
OXYGEN MOLECULES.

M.Gochitashvili, B. Kikiani, R. Kvizhinadze, R. Lomsadze

Accepted for publication May, 2002

Absolute cross sections for dissociative excitation
processes of oxygen atomic and ionic lines in the collisions of e -O;
and He'-O; are determined. The high intense oxygen ionic line
OI1 (83.4 nm) has been observed. In case of electrons impact a
doubly charged oxygen ionic line OII (70.5 nm) has been
observed too. For He'-0; collisions the experimental results are
interpreted qualitatively in terms of quasidiatomi imati

In the present work, the valucs for absolute cross scctions of
dissociative excitation processes at collisions of electrons and helium
jons with oxygen molecules in 200-500 cV and 2-11 keV cnérgy
range are given respectively. The measurements were carried out by
optical spectroscopy method. The experimental sct-up and calibration
procedure for the determination of absolute value of cross sections of:
excitation processes has been described in details [1,2]. An estimation
of uncertainties of the absolute value of all cross scctions given here
did not exceed 20-25% and the accuracy of relative measurements was
4-5%.

The ion beam extracted from the discharge ion source is focused,
accelerated and mass selected in a 60° magnetic sector field. The
formed He' ion beam was passed through collimating slits and finally
cntered into  the collision chamber. To cnsure single collision
condition a working gas pressure was an order of 1-2 x10” Torr.

The radiation emitted in the collision was observed at angle 90°
with respect to the dircction of the primary ion beam. The spectral
analysis of this radiation was performed in the vacuum ultraviolet
(VUV)  spectral tegion by a' Saya-Namioka ~monochromator
incorporating a toroidal diffraction” grating. The intensity of the
radiation was detected by secondary electron  multipliers under
integrating or pulse-counting conditions.
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Particular attention was devoted to the reliable detcrmination and
control of the relative and absolute spectral sensitivity of the light
recording system. This was done by measuring the signal due to the
cmission of the molccular bands and atomic lines cxcited by electrons
in collisions with H, N, O, molccules and Ar atoms. For this an
electron gun was located directly in front of the entrance slit of the
collision chamber .The relative spectral sensitivity and the values of
the absolute cross sections were obtained by comparison with cross
sections for the same lines and molecular bands reported in 3-8)

RESULTS

In Figs.1 and 2 the review spectrum for He' -0, pair in the 80 -
150 nm spectral region at a fixed helium ion encrgy (E = 10 keV) and
for & - O in the 55 - 90 nm spectral region at a fixed energy (E = 0.44
keV) are presented accordingly. In Fig 3 the dependencies of absolute
cross sections from the collision energy for the dissociative excitation
of oxygen atomic OF (97.4, 99.0 nm, 102.6 nm, 115.2 nm) and ionic
OIl (83.4nm) lines at He * -0, collision are presented. Here for the
sake of comparison the excitation cross-section of helium resonance
atomic lines Hel (53.7 nm, 58.4 nm) are presented as well. As it scems
main inelastic channel responsible for the dissociative excitation
processes is an oxygen jonic. ling OII (83 4nm), du to its intensity.
At the collision of electron with oxygen molecules the most intense
ionic line OII (83.4 nm) is observed. The emission spectrum (in an
area of $3.4 nm) includes also relatively intensive ionic linc OIII (83.3
nm, 2p% P - 2p* °D?) (not shown in Fig,). Besides, it is interesting to
mention that the weak ionic linc of doubly charged ion OIII (70.6 nm)
is observed too; The absolute value of excitation cross section of OIIl
(70.6 nm, 2p* *P-2p° °P°) line at an clectron energy E=200 ¢V is equal
to the 3.4x10®cm” and at an energy E = 40 V. to the 3.8 x 107 cm®

DISCUSSION
‘The dissociation of molecules and hence the formation of excited

zmlpin or ionic products proceede: via decay of intermediate core-
excited oxygen molecular ions.
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At the collisions of helium ions with molecules the intense atomic
and ionic lines of oxygen is formed in the charge exchange process
mainly [9), whereas for clectronic collisions the same lines arc formed
in the ionization process. In both cases the formation of excited
products of dissociation is connccted with decay of the same high
excited molecular states of O, This is the reason for comparison of
the results in the case of He™ and electron impact with O; molecule.

To discuss the results of the formation of inner shell vacancy the
quasidiatomic approach has been used. In terms of this approximation
the excitation of inclastic channels is induced by transitions of
electrons at crossings between an initially occupied and promoted
molecular orbital (MO) with cmpty MO’s [9,10]. In our case initial
vacancy in He (ls) orbital becomes an inner vacancy of the
quasimolecule, hence core-excited, one-hole molecular states can be
formed. In particular, the decay of one -hole 20" high excited
molecular states *Y;” or ‘¥, of oxygen cause the excitation of intense
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oxygen ionic linc OII (83.4 nm) [11]. The removal of a 256, clectron ‘
from O, molecules requires about 40¢V [11,12] . Therefore excitation
of the inelastic channcl in the charge exchange process He (1s) +
05/ (20, ") requires changing the internal cnergy of the quasimolecular
(He, O: stem by 15 ¢V. This statement is confirmed from [9] t00.

In fact, the observed broad energy loss spectra around 22 eV might
contain the above excited inelastic channel
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ANGULAR MOMENTUM
CAUSED BY ANY SHAPE VORTEX LINE

L.Kiknadze, Yu.Mamaladze
Accepted for publication Jule 2002

ABSTRACT. The contribution of any shape vortex line to the
angular momentum of the liquid confined to the axially symmetric
vessel is considered. The general formulae, which do not require
the of the, velocity of the liquid, are
received (only the shape and disposition of vortex and wall are
enough).

LINTRODUCTION

The contribution Fx¥pdVof each element pdV is to be
integrated over the volumeViof a liquid to determine its angular
momentum L (pis the density, and v is the velocity). The existence
of a vortex line causes. the inversely proportional dependence of the
velocity on the distance from this line. Because of it the contribution
of the remote part of a liquid to angular momentum is more sufficient
than the contribution of the vortex core though in its vicinity the
velocity tends to infinity (the product rv is finite as well as in far
areas, where the velocity tends to zero). That is why the angular
momentum cannot be determined by rough but simple and effective
estimations with a weak dependence on the form of wall and of the
distance to it (such estimations are possible and widely used for
energy of the vortex in hydrodynamics of superfluid He I (1], sce also
21
During the derivation of the formula of critical velocity of the first
vortex generation Vinen [3] obtained the following expression of the
angular momentum of the vortex, which is disposed along the axis of
acylinder:

(0}



where H is the height of the cylinder, R is its radius, and [ is a
circulation, which was quantized in Vinen's paper, as well as in [4-7)
mentioned below, in the units of 2wh/m (m is the mass of helium
atom). But the structure of the vortex core (the size of this formation is
0

of order of 3A) is neglected as if the incompressible liquid was
considered. The same approximation is cxploited in this paper (if onc
has in mind the superfluid component of He Il denotations p and I’
must be substituted by p, and 2th/m ).

The interaction in the incompressible liquid spreads in a moment.
Because of this three following expressions of angular momentum arc
received also in the hydrodynamics of superfluid liquid. Namely, if a
vortex is disposed parallel to the axis of a cylinder on the distance r,
from this axis being parallel to it then [4,5]:

L :%pl‘(kz -2)H o)

If a vortex is disposed along the axis of rotation of a sphere (its
diameter), then [6):

L=§pl"R3, (6)

where R is the radius of the sphere, If a vortex is disposed along the
axis of rotation of two concentric spheres with radii Ry, R, then [7]:

L:%pr(ki-i{,’). @

Egs. (1,3,4) were received by the direct integration of rpv27rdr with
v=I/2mr . In the case of a displaced vortex its image must be taken
into account, and the integration is complicated.

‘We would not be surprised if in classical hydrodynamics the
formulae exist, which determine the angular momentum of a vortex in
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some other geometry, but we had not seen them in the textbooks. May:
be the point is that in the classical physics the ideal liquid is treated as
the cxcessive idcalization of the properties of real liquid. In the real
liquid the core of a vortex diffuscs. Unlike this situation the vortex
filaments in He 1T are stable and attract more attention.

In several works are calculated the angular moments of many.
vortex arrays formed in rotating He I (both in cylindrical and
spherical gcometry). But in this paper we are interesed only in the
angular momentum of a single vortex. Just this problem is connected
with some aspects of vortex dynamics including the ones connected
with pulsar quakes

2. THE ANGULAR MOMENTUM OF ANY SHAPE VORTEX
LINE CONFINED TO THE AXIALLY SYMMETRIC VESSEL

The main restrictions in the following derivation of Eq. (6) is that
the vessel has an axially symmetry (its wall is the surface of
revolution), and the vortex is supposed to be on one plane with the z -
axis of liquid rotation (Fig.1). The equation of the wall is r=r, (z),
the equation of the vortex line is r=r,(z) (the cylindrical coordinates
r, 0, z are used), and both these dependencies are supposed to be
single-valued. The possible generalizations sce in Sec.5.

In such conditions the integral mentioned above in the beginning
of Sec. 1 may be written down as:

Zmx  W(2) 27
L=p [ dz | drfv,rdo, ©)
z, 0 0

L, =L, =0 under the supposed conditions.

The last integral in Eq. (5) is the circulation around the z-axis. It
is zero if there is no vortex in the circle with the radius r on the height
z, and it is equal to T'=const if there is a vortex in such circle.
‘Therefore



e

Fig.1. The section of the axially symmetric vessel with a vortex on it
The surface outlined by the vortex and the wall is shaded

1
L:Eprzi (52 =52)dz. ©)

where z,;, and z,,, are the limits of the vortex disposition. One can
exploit this equation without necessity to determine the velocity
distribution in the vessel.

The known formulae (Eqs. (1-4)) may be received from Eq. (6)
Using this cquation it is casy to get the result for the case where the
vortex is disposed on the distance r, from the axis of rotation of the

sphere, being parallel to this axis:

max
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3. IMPULSE IN THE SENSE OF KELVIN AND THE
ANGULAR MOMENTUM

The impulse in the Kelvin's sense differs on principle from the
momentum [8-10]. It is so because the transfer of the momentum
which is necessary to set unmoving liquid in the state of given motion
(ust this is the impulsc in the sense of Kelvin) is accompanied by the
action of walls which can sufficiently change the momentum of a
liquid. In the case of angular momentum the similar situation is less
necessary because the action of walls to change the direction of the
rotating liquid flow is centripetal and does not change the angular
momentum. E.g. lot us consider the cases shown in Fig.2. A liquid is
rotating around the vortex disposed along the axis of cylinder or
parallel to it. To creatc such a motion one must do a push on the
shaded surface in the dircction perpendicular to this figure plane. The
following centripetal action of walls is oriented radial, and the angular
momentum oriented along z -axis remains unchanged

zé 2k

0 R 0 v R
Fig.2. The section of a cylinder with a vortex disposed along its axis
and parallel to it. The surface which must be pushed to create
the considered motion of liquid is shaded.

In general case shown in Fig.l the Kelvin's impulse is also
expressed by the shaded surface [4]:
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px =pLS, ®)

where S is the magnitude of the surface limited by the vortex and
walls. It is reasonable to think that the angular momentum can be
caleulated as the product of the Kelvin's impulse on the radius vector
R, of the center of this surface:

L=R.px- ©)

All preceding formulac for L confirm our proposition. Namely, if the
Vortex s disposed along the axis of a cylinder then R, =R/2, and
px =pIRH. Their product gives Eq. (1). If a vortex is disposed
parallel to the axis of rotation of the' cylinder then
R, =1, +(R-1,)/2=(R+1,)/2,px =pTR -1, )H, and their
product gives Eq. (2). If the vortex is disposed along the axis of sphere
then R, =4R/3,py =plwR?/2, and their product gives Eq. (3). If
the vortex is disposed along the axis of two concentric sphercs then
R, =4(R3-R})/3n(R3 -R}), px =pLn(R}-R})/2, and their
product gives Eq. (4).

Let us prove the equivalence of Egs. (9) and (6). The center of the
imaginary surface which one pushes to create a given motion is on the
following distance from the z -axis:

(Tinins Fnax are the minimal and the maximal distances of the surfacc S
from the axis of rotation).
According to Eqgs. (8,9) we obtain:

:prr"j" it (10)
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On the other hand
Teate

The last integral must be taken along the boundary of the surfaceS in

the positive direction of revolution. Substituting Egs. (8,10) in Eq. (9)
we obtain

%prgszdr’ @t

Eq. (6) may be also transformed in the integral about the same path
that gives another expression of L :

s
I

r,2)dz = §ridz, (12)

L:%pl"@tldz 13)

The equivalence of Egs. (11,13) means the equivalence of Egs
(6,9,10). We have obtained these formulae for conditions determined
in Sec2. However some generalizations, described in the following
section, provide the possibility to use our general equations (Egs. (6,9~
11,13)) for actually any shape vortex line.

4. GENERALIZATIONS

The simplest generalization, which can be made as compared with
Fig.1, is the case where a vortex is placed between the wall and
another (also axially symmetric) body. Our general formulae (Egs.
(6,9-11,13)) may be directly exploited in this case. E.g. so may be
received Eq. (4) and the following expression for the case where a
vortex is disposed between two coaxial cylinders parallcl to the axis of
their rotation. In this doubly connected area the existence of a
circulation T is possible on the surface of inner cylinder which gives
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the additional contribution to the angular momentum. Together with
the contribution of a vortex it implies:

L=pr(RE - R}) +pr(RE ~12) (14)
If a vortex s disposed between tiwo concentric sphercs parallel to

the axis of their rotation, and the cdges of a vortex are placed on the
surfaces of both spheres (, <R, ) then

and if the edges of a vortex are placed on the surface only of the outer
sphere 1, >R, then (cf. Eq. (7)):

L:%pr(ké-rj)m. (16)

‘We would like to note that in doubly connected arca between two
cylinders a circulation T'on the surface of inner cylinder is possible
independently from the fact if a vortex exists or not. In the simply
connected area between two spheres a circulation on the surface of the
inner sphere is possible only if it is caused, according the Stokes
theorem, by a vortex that pierces the sphere.

If the functions r(z) which describe walls of a vortex aré not

single-valued then one must divide the curves r.x, into several
single-valued parts and Eq. (6) would be replaced by the sum of
soveral integrals with the OWN Zyyin Zamay @10 Toas T - The values of
these integrals depend on thie absence or existence of a circulation and
its sign in the interval considered. In similar'way one must ‘deal with
Eq. (10) if the dependence: z(r). is not smg}a valued, Eqs ©.11 13)
may be used without any changes.

If Z-axis divides the shaded area into two parts, then their pg
have opposm signs. But corresponding, R, also have opposite signs.
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Therefore the sum of two products py R, will appear in Eq. (9). Eqs-
(6,11,13) may be used without any changes.

Now let us consider the closed vortex, which has no contact with
walls. If we increase the radius of circumfercnce around the axis of
rotation, then the part of the vortex, which is on the distance r,;, (2)
from the axis, enters in this circumference earlicr than the other ones.
This part contributes in Eq. (6) nonzero I until the part of vortex with
Tmax(2) and with circulation ~Tenters. The contribution of
circulation in Eq. (5) for fy, <r<r, is zero. Eq. (6) is valid but
T,,G, Must be substituted by Ty, fuey - EGs. (9,11,13) may be used
without any changes. It is right also in the case where the axis divides
the closed vortex in two parts. But, in this case, in Eq. (9) the product
px R must be substituted by the sum of such products

5. SUMMARY

The momentary shape and disposition of a vortex and walls
completely determine the angular momentum of a liquid at the same
‘moment (let us remind that the interaction in the incompressible liquid
spreads in a moment). The motion of a vortex and its stability is not
considered in this paper. Eqs. (6,9-11,13) only imply the angular
momentum corresponding to definite configuration of a vortex and
walls.
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ELECTRON IMPACT DOUBLE IONIZATION OF HELIUM-
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RACT. For the first time total cross sections for double
-electron atomic systems He, Li", Be*', B** and
C** being in the 2'S and 2°S metastable states are calculated
within the framework of the shake-off model. Only radial
correlation between the target electrons is taken into account and
repulsion between the ejected electrons is ignored.

1. INTRODUCTION

Double ionization of helium and helium-like ions has been a
subject ‘of intensive theorctical and imental studies for recent
years. The reason is that the consideration of the simplest atomic
systems — the members of the helium isoelectronic scquence — is the
most effective tool for exploring the dynamics of double ionization
and, in this way, to study the role of electron-electron correlation in
atoms and ions.

In the experimental studies of ionization processes, the crossing
beam technique is generally used [1]. For helium, the target beam is
formed at room or even lower temperatures [2]. Thercfore, one may
suppose that all the helium atoms of the parent beam are kept in the
ground state. However, for ion beams, the situation is quite different:
depending on the method of formation of the parent beam, the
population of Jong-lived excited states in it can be significant. lons
formed in metastable states are frequently observed in various plasmas
and, in particular, in ion sources [3,4]. Due to their large lifetime, such
particles can casily survive along the path from the source to the
collision region and contribute to the ionization signal. As a
consequence, it is easily understood that the population of the excited
metastable states may play an important role in many collision
experiments. This role was observed in single fonization experiments,
in particular for electron energies below the ground state ionization
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threshold [S]. Thesc observations were confirmed by the theory [6]. It
was also found that ions being in the metastable states might play a
remarkable role in double ionization experiments [7]

It is worth noting that the same situation arises when an He™ ion
beam passes through a gas target in order to form an He atom beam by
charge exchange [8,9]. Consequently, in order to interpret the
experimental results correctly one needs to take into account all the
states (ground and cxcited) presented in the parent beam. In order to
estimate the respective role of these states in the double ionization
(DI) process, it is necessary to know the corresponding cross sections.

In a serics of thre recent papers, within the framework of shake-
off mechanism the first order contribution was analyzed in the case of
clectron impact DI of two-clectron atomic systems, assuming. that
these systems are in their ground state. In the first paper [10] the fully
(eightfold) differential cross section was calculated using plane waves
for the incident and scattered electrons, the Hylleraas-type
wavefunction (with radial correlation only) for the bound electrons
and the Coulomb double-continuum wavefunction for the cjected
electrons. The use of rclatively simple wavefunctions allowed us to
calculate the ecightfold and fourfold differential cross sections
analytically. The further intcgration of the fourfold differcntial cross
section has been performed numerically and the total cross sections
(TCS) were obtaincd for thc members of helium isoelectronic
sequence from H(Z = 1) to N*'(Z = 7) [11]. The calculated values of
TCS are found to be in fair agreement with the available cxperimental
data for He and Li". In the third paper [12] the coefficients of the
asymptotic formula for the TCS in the Bethc-Bom approximation are
determined.

In the present paper the scheme developed for the ground state
two-electron systems is extended to both the 2'S and 2°S excited
metastable states. To the best of the author's knowledge, the Born
approximation has not been applied to the calculation of total DI cross
section for any atom or ion in excited states. (In their recent paper
Muktavat and Srivastava [13] calculated the fully differcntial cross
sections for DI of helium being in the 2'S and 2°S metastable states.)
Again, only radial correlation between the bound electrons is taken
into account in the present calculation. The fully differential cross
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section is obtained in an analytical form and it is integrated
numerically in order to obtain the TCS.

The paper is organized as follows. After determining the goal of
the present study (section 1), we give briefly the theory of double
ionization process for helium-like fons in the metastable states (section
2). In scction 3 we present the result of calculations and discuss the
obtained cross sections. Atomic units (¢ = m = h = 1) will be used
throughout this paper.

2. THEORY

The eightfold differential . cross section (3DCS)  for. double
ionization of helium-like ions is given as

d*c®) @) kkiks [
7 T T M
d0,d0Q,dQ,d(k; "/ 2)d(k,”/2) ki

Here k;,k, kK, arc the waveyectors of the incident, scattercd and
ejected clectrons respectively, d€: denotes the element of solid angle
surrounding the corresponding wavevector. T¢ represents the matrix
clement given by

T = (W viw Dardids, ®

where W) and W) arc the wavefunctions of the colliding system

in the initial and final'states, respectively; V' describes the interaction
between the incident electron and a target

B
[T-%] [F-3|
JIn (1) and (2) the unlike signs .(+), indicate that the ‘Dla] spm of the

1o, bound clectrons is zero or one; iie. the: mgut is i the 2!S or z’s
metastable states, respectively.
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As noted above our scheme is based on an analytical calculation of
the 8DCS. For this we employ the relatively simple wavefunctions
Naely, we describe the initial and final states of the colliding system
by the following wavefunctions:

YOG, B) =0 DOD (R, 5) @

@R =0 O[0PE)-SV0ER)] . ©)

Hore g =" /2m)/ and g =¢™"/(2m)*"? are the plane waves

describing the incident and scattered electrons, respectively,
®®(5,5,) is the wavefunction of the bound clectrons in the target,
@ is the wavefunction of the cjected electrons and

s“u(mﬂm}"} is the overlap integral, which provides the

of the double-cont; ion ) with

respect to the target wavefunction (.
The bound state wavefunctions ®(P(,5) and OO(,5)
representing the initial target states and describing the metastable

singlet state 2'S and the metastable triplet state 2°S, respectively, are
chosen in the form:

B (F,5)=CH [c""~ &P (1-y5) 1626 1y )]. ®)

Here C® is a normalization constant; a,B,y arc the variational
parameters, which have been calculated following the procedure
suggested by Hylleraas and Undheim [14]. For the 2'S and 2°S
metastable states of He, Li', Be®', B*" and C* the obtained values of
,B,y parameters together with the corresponding DI encrgies arc
presented in Table 1.
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Table 1. Variational parameters and DI energies for 2'S and 2'S
metastable and 1'S ground states of He; Li", Be*", B and C**

[ o B i Tincor e
‘ 2_‘5 1.997 | 0.558 [ 0.682 2.1429 2.1460
| He (Z=2) 2°S 2.003 | 0.633 | 1429 2.1742 2.1752
1 1S 1.442 | -0.396 2.8762 2.9036
| 2'S 1.061 | 1.192 5.0347 5.0408
‘ Li'(z=3) 2’S 1.142 | 1881 5.1094 5.1104
| 1's 2.399 | 0.454 7.2492 7.2798
‘ 2'S 1.566 [ 1.698 9.1768 9.1842
= ( 2'S, 1.645 [ 2370 9.2956 9.2965
1's 3351|0492 | 13.6233 | 13.6560
215 4.971 [ 2.070 | 2.203 14.5691 | 14.5777
B> (Z=5) 2°S 5.007 | 2.146 | 2.866 147322 | 14.7350
1's | 5.515 | 4305 | -0.524 21.9978 | 22.0325
7S | 5.967 | 2573 | 205 | 212117 [ 212211
CY@z=6) 2°S | 6.007 | 2.647 | 3364 |21.4128 |21.4203
1's | 6591 | 5260 [ -0.549 | 323725 | 324089

The wavefunction @) describing the ejected electrons in the
final state is taken in the following form:

1

oPGR = O G RGEG]

where £; (F) is the Coulomb continuum wavefunction nommalized to

adelta function in momentum space.

Substituting wavefunctions of the initial and final states (4-7) into
(2) and performing the integration over T, T the matrix clement can
be written as ’

) i il :
7‘;’=£f,—q{l£°’<k.)[lﬁ°’(la)‘ﬂ};"(la)]t




<19~ r1 ) I )k = B, @

where

O@)=16," fe - 16‘”}’“‘:"« &

1\ 2

(I Nizi e

o APE) O

o e
190k) = [ ") r"drf(zn)m

[ (1-i2/k;)e™ 29B® &;)

G =[0G

)(Ee T+ )0, 7)dRd7

and §=k; —k, is the momentum transfer. The explicit expressions for
AD (), BY (K)) (1=0,1) and G, C are given in appendix.
Formula (8) shows that, when only radial correlation between
target electrons is taken into account, the matrix clement T{" may be
represented as a sum of four terms, each of them being the product of
two factors I, (;) and J,(k;). Here I,(k;) describes the direct
cjection of a bound electron by the incident clectron and J, (k;)

describes ionization of the second target electron due to the sudden
change in potential. Now substituting (8) into (1) and taking into
consideration (9) we obtain for the 8DCS corresponding to DI of
helium-like ions in the 2'S and 2°S metastable states

dxc(t)
40,00,00,d(k}/2)d(k3 /2
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z [ W] N(k;,k)k,

S DM M), G
n'qk
where

Nk k;) = [(l _ ek )(1 _ 22l ”—x )

M A (B 1) 1B (k) = Re[Af)(k,)Aff"(lEz )} =
x(BfY (k1) = B () (B (k) - 1B vy = Ky
ME A0 -1AP &) (BO G, £
iR"[(A?)(E))‘"{Ag)&ﬂ)(AfP(Ez)’YAQ)(EZ))'}X
BY(BO ) th ok, (12)
M;*.)=zR{A?)aa)(ag"@>—m;;>oa))'}
xB,‘,")(kl)(Bf,")(k2)—yBg’(kz))i
ﬁ#{Ai?’(E.)(Af,"’(El)—vA},”(E‘))'Jx

<BO,) (B (k) B () £y < K
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In (10) the first term corresponds to direct cjection of an electron
from inner-shell (Is) and the subsequent cjection of outer-shell (2s)
clectron due to the sudden change in potential (process I). The second
term corresponds to direct ejection of an electron from outer-shell (25)
followed by ejection of the electron from inner-shell (1s) (process IT).
The third term in (10) describes the interference between these two
processcs.

The total DI cross section can be obtained by intcgrating the 8DCS

over the solid angles €,,0,,Q, and the cjection energies &, =k; /2
and €, =k3/2

z’[v:‘ﬁ’]2 G
> I T Nlkiky)k, x
0

K[ ME + M MG 2 teyde, 13)

q

}m,dn?

Here ey =(Bi=19)/2 and ey =(E,

1®)/2-¢,, where

E; =k?/2and I® is the DI potential of electrons in helium-like ions.
About the choice of the upper limits of integration in (full curves) se
comment in [11]

3. RESULTS AND DISCUSSION

Using formulac (11-13) we have calculated the total DI cross
section for two-clectron atomic systems from He (Z = 2) to C** (Z = 6)
being in the 2'S and 2°S metastable states. The calculations have been
carried out for incident encrgies extending up to a maximum 150
times the DI threshold. The results for He, Li" and C** are presented in
Figures 1, 2 and 3 (full curves).

Before analysing the obtained cross section let us estimate the
contributions of process 1 and process II to double-clectron ejection.
From the explicit expressions for the matrix clements (formulae {A1}
and {A2} in appendix) it is clear that
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Fig.1.The total cross sections for DI of helium atoms by electrons.
Curves 1 and 2 correspond to 2'S and 2°S metastable states,
respectively. The dashed curve corresponds to the ground
state.

100 1000 0000, &, e¥:
Fig:2:The total oross seations for DI of Li' jons by,clectrons, Curyes 1

and 2 correspond t0 2'S and 2°S metastable states, respectively.:
The dashed curve corresponds to the ground state . v
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Fig.3. The total cross sections for DI of C** jons by clectrons. Curves

1 and 2 correspond to 2'S and 2°S metastable states, respecti-
vely. The dashed curve corresponds to the ground state.

B (k) ~ (Z-0) a4

B (k;) 1B ;) 3

It means that after direct ejection of one of the bound electron the
probability of a sccond ionization is proportional to (Z~a)* for the.
inner-shell clectron and to the square of expression in curly brackets in
(15) for the outer-shell clectron. Taking into consideration that a.=Z
(see Tablel) one can easily determine that the probability of relaxation
to continuum is much less for the inner-shell electron than for the
outer-shell one. This fact allows us to draw the conclusion that though
direct ejection is more probable for the outer-shell electron than for
the inner-shell one, nevertheless process I plays dominant role. The
numerical calculations confirm this conclusion. For instance, in the
case of He the contribution of process I is nearly three order of
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magnitude larger than the contribution of process Il for both’ the
singlet and the triplet states. Therefore we can neglect process Il n the
further analysis
It is worth to note that when B =y = Z/2, the expression in curly
brackets in (13) is cqual to zero and process I does not occur as it
should be. Indeed, in thls c llu. outer-s <hell electron is described by
the 28 (see formula (6))
therefore the probability of the rclaxation of this clectron to the
continuum equals zero. Similarly, when o = Z, the inner-shell electron
described by the lated hydrogen-like 1S and,
accordingly, process II fails
It is clear from Figures’ 1-3 that the' total cross scction
corresponding to the singlet state is larger in magnitude than the TCS
corresponding  to the triplet “state. The difference between the
maximum values of TCS increases from 2.5 for He to 4.5 for C*
Because the values of a parameters for the singlet and triplet states arc
close the probabilities of direct ejection of the inner-shell clectron are
almost the same for the both statcs. It means that the difference
between the TCS is completely determined by the difference between
the' probabilities of relaxation of the' outer-shell electron to the
continuum. The latter is less for the triplet states than for the singlet
state. This statement can be casily shown by analyzing the expression
in curly brackets in (15). Indeed, in (15) the second term is of the
order of one for the both states. As for the first term it is of the order
of one for the singlet state, while owing to the closeness of the sum [
+ 1y to Z (see Table 1) it is very small for the triplet state.
The method suggested by Hylleraas and Undheim [14] allows us
{0 calculate simultaneously the wavefunction of the 1'S ground statc
and the wavefunction of the 2'S metastable states. (The lowest root of
the cquation for energy gives the variational parameters for the ground
state, while the next root corresponds to the metastable state.) Results
obtained for ., B, y and DI encrgics arc presented in Table 1 for He,
Li%,.C*. As it can be seen in Table 1 parameter y.is negative for all
the targets: being in  the ground. state. ‘Accordingly the relevant
wavefunctions are nodeless as it'should be. We emphasize that such:a
procedure for. -constructing the wavcfuncunns ensures | the mutual
of the: to the: ground and
2'S metastable states.
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The total DI cross section calculated for He, Li", C* being in the
ground state are also shown in Figures 1,2 and 3 (dashed curves). Itis
clear from the figures that for all targets except helium maximum
values of the TCS corresponding to the ground state are less than
those corresponding to the metastable states. For helium the ground
state maximum is between the two maxima corresponding to the
singlet and triplet metastable states.

Recently the total DI cross section has been measured for C** ions
in the keV energy region (7). The experiment has been carried out at
an clectron-ion crosscd-beam set-up using an clectron-cyclotron-
resonance ion source. An appreciable fraction of the ion beam was
found to be in the 2°S metastable state (about 8%) owing to the small
lifetime of the 2'S metastable state.

Assuming that the population of the ground state and of the 2°S
metastable state arc 0.92 and 0.08, respectively, and using the
calculated values for the cross sections corresponding to each
component in the fon beam we obtain for the apparent cross section
Gup = 0.6x10%cm’ at 1000 eV incident electron energy. The
experimentally measured value at that energy is Gup, = 2.6x10% cm®
Taking in the view that the region of validity of the first Bom
approximation is far away from the above mentioned encrgy (which
only a little exceeds the DI potential for the ground state) one can
conclude that there is satisfactory agreement between theory and
experiment.

Thus, in order to check the reliability of results obtained in the
present study it is necessary to carry out the systematic measurements
of total DI cross sections for helium-like ions in the medium and
especially in the high energy region.

ACKNOWLEDGMENTS

The authors would like to thank Professor L. Kurdadze for fruitful
discussion.

103



APPENDIX

The explicit analytical expressions for B{” (k;) and A (K;) (n =0,

1) are
z e d
~visiE
B (k;)=-8n 5 szc ) Al
(2 +12)
Oaeyo| L 2272) |
L (k')"[Z‘—TFIE}‘ B (k;), (A2)
1
o a,(q.k
A= G0 54 ) -2 CO @B () [+
(p2+q1+k}—2qk]xj)

2,k

h®(x;) [ (A3)
\2 B 1)
(1 #a? +K} ~2ak;x;)

+
In' the formulac: given above x;=cos§;, where 8; is the, angle
between § and the wavevector k; . 2

The fanctions a,,(q,k;), end d(x;),h{®)(x;) in (A 3) are

determined as follows: z
iz 24k

8 K ouleq-k?
2(g k)= e M ()
N R

P 66) =] (1 a5 D 65) D) eos )=
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20 (1 + 42 16w 2 0) o) snz ). 49

)0 <0245 -5y )

(12 40 )R )+ Jeosn ), (A6)

where
Wi () =2Zak x; - (Z 41 + (Z -0’ =K]) .
wiP(x)) = Zax; - @-wk;,
2, 2-7](272 Kox
1»-(":):%1"-qu-“1'
T (2 ra? i3) (k)
and

(#lare) o +a-w))

4p ©)
B [
p7+q1+k}r2qkixi] Ko

i g4k

2 +q? +k} ~2qk;x; (pzx»(q+k,-)zj[u2 +(‘I‘k;)1)
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x b0 (x)) + Qu () sin g, (%)) ~ Ry, (%) cosg (x;) A7)

= g
q* +K? 20k x; k;
" 1
1 W +q? +k} |

4 (x;))

b ) +I2 - 2qkjx; [u’ +(q+kl)2)(”z +(q"k1)1jJ
Ry (xj)sin g, (%7) = Qu(x;) cos . (x;) . (A8)
Q,(x7)=22a%; (312 +7 +k )42k a?,
R, (x;) = —4Zquk x; +4y.Z(p2 +k})74p.7 (p’ +K2 +q2)7
»(p2 +(q+ki)z)[p2 +(q-kj)’j A9)

The expressions for C*) end G®are:

@ LB =31B+37 S| 2 g
(= S + i : (A.10)
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ABSTRACT. The problem of nonlinear resonance is reduced
to the lesearch of ‘motion corresponding to _the _universal
uantur ion of which leads to
the study of the cigenfunctions and eigenvalues of the Mathieu —
Schrodinger equation. The eigenstates of the Mathieu —
Schrodinger equation in the area of the classical separatrix are
nondegenerate. Going out from this area by the variation of
pumping amplitude both for the least and largest values of
pumping amplitudes, the system passes in the area of degenerate
energy terms. The degeneration occurs in the form of energy terms
branching from both of the nondegenerate areas. At multiple
passage through the branching points, which can be achieved by
slow modulation of the pumping amplitude, the “creeping” of the
system with respect to energy terms takes place. This phenomenon
of “creeping” of the level population, foreordained by the presence
of branching points of the energy terms, is a peculiar property of
the equation of Mathieu — Schrodinger and can be considered as
quantum analog of the classical stochastic layer originating near
the separatrix at the classical investigation of the same problem.

§ 1. INTRODUCTION. STATEMENT OF THE PROBLEM

It is known [1], that in the approximation of moderate nonlinearity,
Hamiltonian, describing the phenomenon of the nonlinear resonance
can be represented in the form of universal Haniltonian coinciding by
the form to the Hamiltonian of the mathematical pendulum. The
universal Hamiltonian circumscribes those small deviations of the
action from its resonance value (i.c. the value of the action followed
from a resonance condition), which arise in this approximation.

At the classical reviewing the motion generated by the universal
Hamiltonian on the phase space, consists of two types of topologically
distinguished curves divided by the separatrix [1]. In consequence of
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perturbation of trajectories near to the separatrix by the periodic
perturbation arises stochastic layer, i.e. the arca of stochastic motion
near to the scparatrix. At quantum reviewing Schrodinger equation for
the universal Hamiltonian is represented in the form of the equation of
Mathicu, solutions of which (wave functions) are the periodic
functions of Mathieu

Many physical problems can be reduced to the solution of the
equation of Mathieu. For example, in view of research the
phenomenon of parametrical resonance, the analysis of the equations
of Mathieu leading to the origin of zoncs of unstable motion [2]. At
study of motion of clectron in the periodic potential field, the analysis
of the Schrodinger equation, which is reduced to the equation of the
Mathicu, explains the presence of forbidden cnergy zomes in
semiconductors [3). It is ‘possible to cite " other" similar cxamples,
however equation of the Mathieu--Schrodinger for thc universal
Hamiltonian differs from them, because in the case, considered by us,
the motion is finite and, hence, energy spectrum without fail is
discrete. Depending on the values of parameters of the problem, energy
spectrum can become degencrate. In' the' present ‘work the quantum
mechanical research of the cquation of the Mathicu-Schrodinger for the
universal ‘Hamiltonian will be carried out. The condition of
degencration of the encrgy spectrum and the reasons of their emerging
will be investigated: An attempt is made to find quantum analog of the
classical stochastic layer.

§ 2. UNIVERSAL HAMILTONIAN

Let us present atom as a nonlinear oscillator under the action of the
variable monochromatic field. Then Hamiltonian of the system atom +
field is of the following form:

H(x,p, ) =Hy (x,p) + Hyyr (x) +eV(x,1), 1)

2
where Hn=%[%+m§mx’]_ Hy =B+ 400

V(x,t)=Vyxcos Qt; o 81,
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¢, m arc the charge and mass of the clectron, X, p the coordinate
and impulse of the electron, @, the cigenfrequency, y and B are the
coefficients at the nonlincar terms, £, and Q the amplitude and
frequency of a variable field, interaction V(x,t) of the electron with
the variable field we shall consider as small perturbation.

Having made passage to the variables of action-angle (I ,0) with
the help of transformations x =(21/may )'’* cos® , p=—(21-ma, )’
xsin@, assuming that resonance condition ~Q is fulfilled and
averaging the cquation with respect of fast phase © from, the
Hamiltonian (1) we get

H(, ¢, t)=H)" +&-V(I)cosq,

e
HS’"=%I+HTL,W=i(L] 7, o
2 mo,

V(D) = Vy (1/2ma,)?

The anharmonicity of electronic oscillation Hy, plays an essential
role in the generation of the third harmonics in solids like isotropic
crystals (Li, NaCL), and also in anisotropic ones with the birefringence
(CaC0;).

Here we have introduced the slow phase ¢=8-Qt, which in time
~2m/Q varies insignificantly. The resonance condition is fulfilled for
the particular value of the action Iy, value of which can be find from
the same resonance condition

pra(ly)=0, @)
NL
where m(l):[aﬂ“ ]—n‘
a
Introducing the dimensi parameter of nonlinearity [1]
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@

and cxpanding Hamiltonian (2) in the series with respect of small
deviations of the action AI=I-1,, in the approximation of the
moderate nonlinearity

€ <<e, <<l/e, Al/], <<1, ®)
we obtain Hamiltonian'in the form of

H:f’z—(m)l +Vicos ¢; 1)
where V=e-V,), o=
e,

Hamiltonian (6), called universal, as it is easy to note, is similar to
the Hamiltonian of the-pendulum with. “mass” 1/o’, in the “gravity”
field with acceleration of gravity g~ V.. If in (6) Al is substituted by
the appropriate operator Al ——if0/dp one can obtain the universal
Hamiltonian in the quantum form

2,1
el 4 Veoso @)
B og? GG 1
With the help of (7) it is possible'to cxplorc quantum properties of
motion for the nonlinear resonance in the quasl i-classical -arca
(g >> ).
§ 3. SYMMETRIES OF THE EQUATIONS'OF MA'K HIEU -
SCHRODINGER d

Having written the stationary Schrodinger equations
H‘l’ Yo, @®)
for the Hamiltonian (7), We get :

P¥a 6, V0, )va=

©)
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V(l, @)=lcos2¢p,

‘where the dimensionless quantities are introduced

o H’;—V (10)
e’

Fig.. The dependcnce of the encrgy of interaction V. from the
phase @
The interaction has the following properties of the symmetry:
n
1. V(@=V(-9), 2 V(@=V(t+¢), 3.V| Ew]:v(%-@j.

G.M Zaslavsky and G.P.Berman [4] were the first who considered
the equation of the Mathieu--Schrodinger for the quantum description
of the  nonlinear resonance in the approximation of moderate
nonlinearity. They studied the case of quasiclassical approximation
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Al>> It for both variables T and Al. Tn this work we shall not-apply
quasiclassical approximation with respect to Al We investigate the
cquation of the Mathicu - Schrodinger in essentially quantum arca

We content ourselves with only even and odd solutioms with
respect to @ of equation of the Mathieu - Schrodinger (9). Those
solutions have n zeroes in the interval 0< ¢ < . Eigenfunctions
, can be recorded with the help of the Mathieu functions [4]: even
ce, (@) and odd se,(q.l). Appropriate cigenvalues are usually
designated by a,(1) and b(1). For simplicity below sometimes we
omit the argument / and write ce,, (9). se,(9), @, b,

Mathieu functions are eigenfunctions of the problem of Sturm-—-
Liouville for the equations (9) at the boundary conditions

W(0)=w(m) =0 for  se, (@),
om0 B o) an
do de

From the general theory of the Sturm-Liouville of follows, that for
arbitrary 72=1,2, ... there exists cigenfunction s, (¢9) and for cach N
= 0,12, .... determined cigenfunction ce, (). The definition of the
Mathien function must be supplemented with the choice of the
arbitrary constant so that the conditions were fulfilled:

1 2
@, (0)>0,  —[oeh(@de=1
0

dse 1%
=n(0,)>0, = [soh(@)dp=1, (12)
do Ty

If w(¢)=G(¢) means either ce (), or se,(q), then G(g) and
G(n—¢) satisfy the same equation (9) and the same’ boundary
conditions (11). Therefore'these functions differ from each ‘other only
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by the constants. Hence, G(@) is even or odd function with respect 10
/2~ . Taking this into account, two functions (1) break up into
four Mathieu functions:

VO =W/ D=0, G@)=se1nz (@), phase
W(O):a"“;(ﬂz):& Gl@) =Seaei (@), phase 2, (13)

dy

E'*(O):w("/lh(), G((p) =ceynyi ().  phase 27,
o

dy dy

T:L(O) = r:‘p(nu) =0, G(¢)=ceypn(¢), phase ©

For arbitrary m = 0,1,2... there is one cigenfunction for each of
four boundary conditions and m equal to the number of zeroes in the
interval 0<p<m/2

In case of our problem the boundary conditions (13) are
predetermined by nothing; cach of them is feasible in the equal
measure. The functions (13) represent a complete system of
cigenfunctions of the equation (9)

The propertics of symmetry of the Mathicu function can be
presented in Table 1 (3]

Let us remark, that as cos2¢ is the invariant concerning all of the
four transformations of the Table 1, the interaction V(l, ¢), entering
in the cquation of Mathieu-Schrodinger (9) is a scalar value in
configurational space of the Mathieu function.

By immediate check it is easy to convince, that four elements of
transformation

Gle>-9)=a, Go>r-@)=b,
Gleon+@)=c, Glo—9)=c,



Table 1. Relations of a symmetry for the Mathieu function

6@ GCo | G- Grre) |
(@ | (@ | cean(® (@ |
Connn@ | Conn@ | 00 (@ | -copmal@) |
s20i1@ | -2m0(® | eann(® “Seana (@) |
Came2 @ | ~SCamsz @ | -SCamia(®) Somin@ |

are forming a group. For this it is cnough to test the realization of the
following relations:

ab=c, ac=b, bc=a (14)

The group contains three elements a,b,c, of the second order and
unity element ¢ . The group G is isomorphic to the well-known group
of the Klein [6]. This group is known in the group theory by the
applications to the quantum mechanics (designated as V). All the
elements of the group commute. This assertion can be easily checked
taking into account group operations (14). So, the symmetry group of
the Mathieu function G is the Abelian group and consequently has only
This Jast. statement
can be examined in the other way. If in the base of four functions (13)
with the help of Table 1 we construct the representation for the four
clements of the symmetry group G, such four-dimensional
representation will be reducible and break up on four one-dimensional
representations. It will be'a dircct sum of the four one-dimensional
representations. Each of three elements a,b,c in combination with
unit ¢ forms a subgroup. 4

oG Eelb
G 5G_:ec : (15)
G, e,a
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Each of subgroups G, G,.G_ is the invariant subgroup in-group G
The characters of representation of quadruple group (and also its
subgroups) arc well investigated and we do not reduce them.

The presence of the symmetry in a group, describing the
considered problem of only onc-dimensional representations means the
absence of degencration in the encrgy spectrum. So, we conclude, that
the eigenvalues of the equation of the Mathieu - Schrodinger (9) arc
nondegenerated, and the eigenfunctions arc the Mathieu functions (13)
However we shall remind, that both the encrgy terms a,.b,,, and the

Mathieu functions depend on the parameter /. At the variation of / in
the system can appear symmetry higher, than assigned in Table 1, that
might lead to the degeneration of levels

§ 4. DEGENERATE CONDITION OF THE EQUATION OF THE
MATHIEU - SCHRODINGER

The condition E, ~1 at the classical reviewing of motion of the
mathematical pendulum corresponds to the case, when the initial
kinetic energy of the pendulum is close to the maximum potential, i.c.
to the condition of motion near to the separatrix. Therefore it is
possible o announce, that the results uf the previous pamgmph
(absence of and

to the appointed restricted area (sizes of whxch will be eslabhshcd
below) from two sides of the separatrix E=1, on the phase plane with
the coordinates E and /. In this paragraph we shall try to find out
what happens outside of this arca in case of small and big values of

a) Degeneration of states at small I (area from the lefl of the
separatrix line)

In the limit /0 the equation of the Mathieu - Schrodinger (9) takes
the form:

By =0 (16)
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The orthonormalized system of solutions of the equation (16) consists
of even and odd solutions

Ve =COSNQ, Wy, Ssinng. 17)
They both correspond to the one eigenvalue of the cnergy E, =n’. Let

us remark, that the functions (17) arc in correspondence with the well-
known limiting values (/ — 0 ) of Mathieu functions [8]:

cey (@) > cosng,  se,(g) > sinng, (18)
ic. at 1=0 double degencration of the levels E, =n’ takes place
This means, that at the diminution of [ the approximation of the
cnergy terms with the identical n takes place and for /=0 they arc
merged together. It is necessary to find ‘out that this confluence
happens in the point 7'=0 or earlier at /0. By that we shall establish
the boundaries of the variation of the parameter I, where cncrgy
spectrum is nondegenerated.

Let us find out, how the eigenfunctions of: the degenerated states
corresponding to the level E, =n’ look Tike. The functions (17) for
this purpose are unsuitable as they form base of reduced representation
of the symmetry group of the equation (16). Really, the cquation (16)
is the Schrodinger cquation for free rotation in the phase plane . The
receptivity symmetry group is named as a symmetry group of two-
dimensional rotations O7(2). The group O'(2) is continuous and
Abelian [6] with the infinitesimal operator

9
== 19
% (19)

In' the ‘base of functions' (17) operators Ji: forms' two-dimensional
representation

(20)

- o 4
0 1 =1 0

01|

118



As the Abelian group can have only onc-dimensional indecomposable
the (20) s reducible.

To surmount this problem we shall recollect, that the eigenfunctions

for degencrate condition can be also complex

Usually, as base of the nondecomposable representation of the group

07(2) complex functions are taken [6]

V(@ =c"7. @1)

In this base the operator J forms one-dimensional representation.
However, it is necessary to take into account that due to the symmetry
with respect to the change of sign of time in the quantum mechanics
complex conjugate wave functions correspond to onc energy
eigenvalue. Therefore two complexes conjugate representations , (@)

and y'a () should be considered together, as one representation with
doubled dimension [6,7]. So in degenerate area in view of conditions

of (see (12)), for it is necessary to take
complex conjugate functions
V2 g

(22)

Va(9)=-¢ v (9

Let us remark, that the infinitesimal operator of the axial symmetry.
group J (19) forms a transformation group, which is isomorphic to the
subgroup G_ (15). The element of the symmetry c=G(¢—>m+¢) of
the subgroup G_ provides recurrence of the phase variation after each
period and consequently the symmetry G_ characterizes the condition
of motion similar to the classical rotary motion.

So, at /=0 we are having double degenerate state with the wave
functions (22). Let us find out, if the perturbation

V(, ¢)=lcos2p, 1<l @3)

can take off the existing degeneration.
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It is known, first order terms of the perturbation theory for, the
cnergy eigenvalues and the exact functions of zero approximation: for
double degenerate levels look like [7]

E},'Z:-[(\l” + Vi) (Vg +Vi)? +4-[Vio* }

Vo =¥0 =C v} +Cy v,
I

1
= 2‘(!/1 R = Vi i o)
WMial| v =Voa)? + 4V
i
- Vau + Vit - Vy
v o Al
where the index in brackets ds to the order of the

theory, matrix elements of the perturbation (23) Vi (ik=1.2) are
caleulated by using of functions (22) of the degenerate state of the
nonperturbed Hamiltonian, Taking into account expressions (22) we
shall calculate the matrix elements:

-
Vit =1[ V3 (0)- ¥ (9) - cos 20d9=0, V=0
i 0

0 if! n#l

5
Vi =1 Wi (9)-cos2edp=gim
0 7 1 n

After substitution of those matrix elements in the expressions (24) for
the eigenvalues and exact. elgcnﬁmouuns ‘we shall ob!am
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Waol =COS @, =-isin¢ (25)

Thus, the exact wave functions (25) of the nondegencrate state only for
n =1 coincide with the Mathicu function in the limit (7 —0) (18). 1t
is possible to expect, in the state n#1 the degeneration disappears at
1#0, where the eigenfunctions of the nondegenerate states are
expressed by the functions of Mathieu. For example, for wave
functions with odd n, with increasing / function (22) takes the form

2
I () :T(ccn(p+lsc,,i?)

2=y ‘p)=§(cc“'p*l%uw) n#l, 120 (26)

The singularity of the problem solved by us is that the Hamiltonian
(7) and therefore cigenvalues and the cigenfunctions depend on the
parameter /. This dependence leads to the degencration of the energy
levels for some values of the parameter / while for other values of /
energy levels arc not degenerated. From well-known problems of the
quantum mechanics similar dependence from the parameter arises for
example at the research of electronic terms of diatomic molecules,
where the role of the parameter plays a distance between the kernels of
the atoms (7]

Let us assume, that at =/, the removal of degeneration for the -
th energy term happens. Then, accordingly on the left and right from
I, the equation of the Mathieu-Schrodinger (8-10) is possible to
rewrite as

HO)y=E@)y E2<,

Hw=E@y L2, @1

=i

=31,
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As H depends on / continuously, then in immediate proximity to'the
point /, it is possible to write (9)

m/:)zﬂ('_‘n?s:n, ©3)
ay
where with account of (9)

;THS T 5 licoso0: @)

Substituting in (28) F(/,) - H and H() - Ho, the Hamiltonian in
nearby of the point / =/, we shall present in the form of

H=H, + V6., ¢. (30)

where. Hy =—— -l cos29, @1

o
V(5 1, @)=-dlcos2p, 8l>0 62)

Let ‘s ascertain if the degenerate states situated to the left of /,,
correspond to the accidental degenerate conditions. Let us remind, that
usual removal of the degeneration is connected to the lowering of the
Hamiltonian symmetry caused by the perturbation, while in case of
casual jon the total iltonian and the ion have the
identical symmetry [6]. On the first sight the nonperturbed
Hamiltonian (31) and perturbation (32) have the identical dependence
from the phase ¢ and, hence, have the identical symmetry. However,
as a matter of fact it is not so. The special role of the point /, is that on
the right from /, the system is characterized by the wave functions
with the quadruple symmetry of the group G (Table 1) while on the left
- by the symmetry of subgroup G_.

Making transformation for the odd wave fanctions n — 2m +1and
for the even wave functions n—>2m (see (11)-(13)) for the odd matrix
celements we get:

i




vire = Liyamven, g de

To

= 3 £12C a1 2052000, B3)
=

w17 am 1y
el N (G A ') do=
0
B o
= (e ) cos20de )

Here for the brevity of Mathicu function we write without argument .
Moreover as the Mathicu functions for the small &/ as a result of
continually depending from the parameter / changes slightly (see Fig.2)
at the calculation of matrix elements we neglect this dependence.

VAL
AR

Fig.2. Plots of the Mathicu function cey(1+3L¢) ceq(Le), at values
of parameters near the point of branching [ =2, 8/ = 1plotted
by the use of numerical methods. It is obvious that small
variation of the parameter / leads to the small variation of the
Mathicu functions.
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Let us remark the matrix elements (33), (34) refer to the Samme
of wave functions arc
identical). The perturbation V(3/,¢), as was already mentioned, is
scalar in space of these wave functions. The group theory gives a
simple method for the determination of selection rules for the matrix
clements [6,7). Not to go into details, we want to accentuate, according
to this method, for scalar value only matrix elements for the transition
between states of identical type are distinct from zero [7] (i.c. referring
to the same indecomposable representation). Thus, matrix elcments can
be distinct from zero and we shall initiate with their calculation.

Let us take advantage of expansion formulas in the Fourier series
for Mathieu functions [5].

Coamr = 2 ABR cosr D)o, 39)
=
Seam = 2 BYH sin(2r +1)e (36)
]

The factors of cxpansion A2™;! and B3mi! are defincd with the help

of well-known recursion relations [5,8,9]. Substituting (35) in (33) and
(34), after simple integration, having omitted superscripts for
simplicity one can obtain:

8l
Voo =Voy =T 3 {Agcn (Agess + Azect) = Baent (Baess + Bar)}»
b=
(37)
8l
e 3 {Azer1 (Agrss +Agees) + Byr (Borsa +Bac)} -
=

(38)
These exprossions can be simplified with the help of the recursion
relations [5] for Asy )

2@z (e D |AdEl - o age A0, 09

2[Bamer — (2 1)? B3 <2 T BRI =0, (40)

Vir
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where @y =amin () and by =y (1) are energy torms
(Mathicu characteristics [8]) in nondegenerate arca for the states
CCamer and sey,, accordingly. In degenerate area the terms @y,
and by, converge together. Determining from the (39), (40)
Ay +Agys and By, +Byy,; and substituting in the (37) , (38)
we obtain

amel _yamal
A yin

L
2 2 %

amtl _y2ms
V2 = y2m

(&2m

L
2

ot )], @)
where
Ao i(ZHUI[Ai?X'} a1 _ z(2r+l)l[8§aill]z
=) =

For the deriving of the formulas (41) and (42) we used the relations
[5.8]

o 3 o 5

Y[Agn]'=1 and  X[Bya] =1

= =

Substituting the matrix elements (41) and (42) in the expressions
of perturbation theory in the approximation of first order with respect
to energy eigenvalues and for exact functions of zero approximation
(24) we get

2mel __ Ol 2mély _ F2mel g 2mél
B o (T A ),
E2m 2 ’zi’“ ]:bmﬂ (L2 feme  2met )]! @)

T OEE e ),

¥ (g isegna (U79), (@4)
where 2™ is the value of / at which the removal of degeneration
with 2m+1 - th term happens in the area on the lcft from the line of
the separatrix. Therefore in this point it is possible to write
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B3R (20) =ty (PP = et (B™) . 109)

The sccond part of this relation to all intents and purposes is the
equation for the definition of /2™*'. However, analytical solution of
this relation is not possible to derive and therefore for determination of
2™ might be realized only using numerical methods (see Table 2).
The exact functions of the zero order (44) within insignificant phase
multiplier coincide with the appropriate pair of wave functions (13)
from the states of nondegencrate area. So in points /2™ the wave
functions of the degenerate states turn into the wave functions of the
nondegenerate states. Similarly it is possible to calculate the matrix

elements for even states V2% and V2™, taking into account expansion

formulas of functions cee (@) and se,p (1), in the Fourier series
[5,8] and also by use of the similar to (39), (40) relations of recursion
Omitting mathematical details of these calculations, we present final
results for approximation of first order with respect to energy
eigenvalues and for exact wave functions of zero approximation:

En = o @A),
pn =Ly, ) - B |, )

Vi (22 0)=co (B7,0),
v (2R @) =isepy (B7,0). @)

The points of a branching /2™ of encrgy terms are obtained (using
numerical methods, sce Table 2) with the help of equations

gy (B™) =y (B7). : “3)
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Table 2. Results of numerical calculations for the coordinates of left

branching points
[n Left points of branching
| 12042 (48) 2 45)
0 030 0
1 2.0 12
2 80 s
3280 130

Exact wave functions of the zero order (47), in case of disdain non-
stationary phase factor coincide with the appropriate pair of functions
from (13), describing the nondegenerate state. In other words, in the
point /2™ the removal of degeneration happens. On the basis of the
obtained results it is possible to present a qualitative picture of the
variation of energy terms on the plane (E, /) in left-hand area from the
linc of the separatrix (Fig.3).

—>

Fig.3. Energy levels as function of parameter / on the plane (E, /) in
left-hand arca from the line of the scparatrix. The points of the
branching of curves represent the boundaries between
degencrate and nondegenerate states.
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Similar picture is usually obtained when investigating stability
arcas in the parametrical resopance [2].

At the end of this paragraph we shall remark that degenerate state,
located at the left of separatrix line, can be considered, as analog of
classical rotary motion.

b) Degenerate state at major I. The area on the right of the
separatrix line.

With magnification of / the particle can be thrilled in deep “hole”
of the potential encrgy (V=/cos2p, 0<@<w a Fig.l), making
oscillatory rotion. Propertics of wave functions of quantum oscillator
near to the bottom of the hole are well known. This is even and odd
wave functions relative to the center of the hole #/2 of and presence
of zeros in wave functions. With.the help of the third column of Table
1 it is possible to write symmetry conditions close to- 1/2 :

G+ @) =D cen G- 9), )
sen(3+9) =)™

sem (G- @)-

ie. ey (¢) , Seoms1(9) are even functions and ey (9), CComi (@)
are odd functions. Functions e,y (), Sezms(®)s Cepmsu (@) and
Sepmsz(9) have m real zeros between ¢=0 and (p=m/2 (ot
considering zcros on edges).

Existing alternation of states (Fig.3) in area along the line of the
separatrix is conditioned by the properties of states at the small /. With
the help of the cxpressions (49) it is possible to determine casily, that
in the spectrum of the states along the line E=/ two (instead of onc)
even states alternate with odd states and so on. To get the alternation,
caused now by properties at major /, two even conditions must
degenerate in one even and two odd - in one odd. So we come to the
conclusion, that two levels with wave fnncucns Ceo () and
se,md(tp) cnm\ng nearer amalgamate in one level aud the following
two levels = cepry(() and sey,;(¢): also-in oné.level: The! levels
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obtained in this way will be doubly degencrated. The reasons of it are
the same s at the rescarch of the similar problem for the states to the
left of the separatrix. Not iterating this rcasoning, we shall write
complex wave functions corresponding to the degenerated condition in
the form:

En (@) =g (@) Ziseroyi (@) evenstate,
Gunt ()= 001 (9) £isey5 (@) odd state (50)

In the basc of complex wave functions &5, and G, the
representation of the subgroup G. (15), consisting from the elements e
and b is realized. Evenness of the wave functions & and ¢ with respect
to the transformation b = G(¢p — n—¢) of the subgroups G.
characterizes an important property of wave functions evenness of the
quantum oscillatory process.

Let us set about with the calculation of the matrix clements of
interaction (32) for the states given by the wave functions (50):

o S g
Wiz =— [ &, c0s20(C],)"de 6D
o
and
o O s 3 .
Wit = = j &3n cos2¢(C,) de,  8/<0 (52)
0

Let us use expansion formulas in the Fourier series [5] for the
Mathieu functions with even index

Gy = 2 AJY' cos2r9,
=0

(53)

Rl
Seam = D, By Sin21,
=0
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and by recurrence relations

(E=4r) A ~8l(Ag +Agia) =0
E=ay,() =23,
and (54)

(E=(21+2)")B;, —8(By, +Bjy4) =0
E=by10()

After simple calculations similar to those in the previous section, we
shall get

W =W = 4 bi) <1 (A AP 4B, 69)
W =W L 0y by -1 A3 AT 4B, o)

where

oy . 12 = . ~

A3 [Agr] . B> on? [B;:" T 57)

i b=
For deriving the formulas (55,56) we have used the relations [5,8]:
2 2 2 2
Aol + 2 [Ay ] =1 and 3 [Byu] =L (58)
&t =

Substituting the matrix elements (55) and (56) in the formulas of the
secular perturbation theory for the first order terms of the energy
eigenvalues and for exact functions of the zero approximation (24) we
shall obtain: :
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8l . i
B = am @M -AF -]
. 8! ©9)
m+l :ﬂT[b7m‘l<I}m)/B2m»v}
W =cerm (@, ¥ =i-souma (60)

From expressions (59) and (60) follows, that going from the right
to the left, in the direction of diminution of /, in points /=/2" and
1=12™" the removal of degeneration for the levels @y by takes
Wi

place. For determination of the points and _I2™ we have to

solve the cquations

A (M) =Yg (B™), Gy B™™) =bpin (™) (61)

This equation can be solved only using numerical method (Table 3).

Table 3. Results of numerical calculations for the coordinates of right
branching points

n Right points of branching
o ot

1 150 175

2 250 32

3 a1 51

The similar calculations can be easily done for the odd states (50)
EL. As follows from these calculations, at particular values / the
degeneration is removed. The results, obtained in this section, are
plotted in Fig.4 2

The Figures 3 and 4 supplement cach other: in the field of
intersection with the separatrix the curves of the Figures 3 and 4 are
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smoothly joined. As a result we get well known diagrams of Mathicu-
characteristics [8,9] obtained earlier also with the usé of numerical
method.

Fig.4. Energy levels as a function of the parameter /on the planc
(E,/) to the arca right from the separatrix line. The points of
branching of curves represent degeneration points of terms.
in this area.

So, let us summarize the results obtained in this paragraph. The
equation of the Mathieu-Shrodinger has an appointcd symmetry. The
transformations of the symmetry of the Mathieu functions form the
group G, which is isomorphic to the quatemary group of Klein. To this
symmetry on a plane (E,7) corresponds appointed arca along the line
of the scparatrix E=/, containing nondegenerate energy terms. This
area is restricted double-sided by the areas of degenerate states. The
area of degenerate states is the quantum mechanical analogs of two
forms of motion of the classical mathematical pandulum - rotary and
oscillatory. Ccmpanng results of quantum reviewing with classical we.
remark, that these two conditions ‘of motion at quantum reviewing are
divided by the area of a finite measure, whzreas at the' classical
reviewing — mmsnre of ﬂ:c sepa:amx is, equal to mo :
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In branching points of energy terms the modification of the
system’s symmetry happens. The arca of the nondegenerate states is
characterized by the symmetry of quaternary group of Klain G,
whereas the areas of the degenerate states are characterized by the
symmetries of the subgroups G- and G correspondingly.

§ 5. INTEGRALS OF MOTION. AVERAGE VALUES OF SOME
OBSERVABLE QUANTITIES

Let us find out the complete set of physical quantities for our
system. For this purpose it is necessary to rewrite all transformations,
which commutc with the Hamiltonian (7). As we already have
established (see Table.1), these clements of symmetry form quaternary
group of the Klein. In this paragraph each element of this group is
compared the appropriate quantum mechanical operators producing
these transformations. So, the element of group a is the operator of
inversion  Ip, (Low(9)=w(-¢)), which commutes with the
Hamiltonian H (7)

Hlp-IH=0, (62)

The of the F jan y(¢) is also
for the operator of the inversion 7

Tow(@)=Ioy(@) (63)

Acting once again on the (63) by means of operator 7, one can obtain
12w(9)=I2y(®) = () . From here follows, that eigenvalues of the
operator of inversion are Jp =21 Thus, the eigenfunctions are having
the fixed evenness, which remains invariable in time. The element b
of the Klein symmetry group, also commuting with the Hamiltonian, is
the operator of inversion relative to the center of the hole (Fig.1) -
Ly, It is possible to show similarly, that the relevant eigenvalues of

the operator are I, /, =*1.
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The element ¢ of the Klain symmetry group, commuting with:the
Hamiltonian, is the operator of translation T, with respect to the phase

on the distance m. The eigenvalues of the operator of translation T

In the area of nondegenerate states designated in' the Fig.3 and 4 by
means of G, all four operators component which form the gang: the
energy H, inversion T, inversion concerning to the center of the hole
I,
cigenfunctions. For example, to the eigenstate_ce,,(!) corresponds to
the energy term @y (9)s Lo =1, Iy, =-1, T, ==1. We reduce the
Table 4 of quantum numbers for eigenfunctions for the nondegencrate
states.

and translation with respect to the phase 7, are having the same

Table 4. Table of energy terms and quantum numbers for the
cigenfunctions of nondegenerate states (/> 0).

E, L | L | T
ool @) (1) l 1 !
Coannll @ | Bma(l) 1 T
Seomals @ | bapu@® | 1 i
Seomials @ | bamea® | -1 ;1 !

In degenerated area designated by the G_ in Fig2, where the
states are characterized by wave functions Y, and Win. (25),
operators of symmetry. produce transformations

I3V =Vin ¥ = Vi,

Lo Wim=¥ins . Tein¥ima = ~Vimas (64)
To¥3m =Vim» - Tt =~V (©5)
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According to the relations (64), the wave functions 3, and Wi
are not eigenfunctions for the inversion operators I, and I/, , but are
cigenfunctions for the (65) operator of translation T,

“This result is casy for understanding because, degenerate area G_
corresponds to the rotary motion. Since the rotary motion is valid for
the sufficient high energies E>1_ >/, properties of the symmetry
(Fig:1), defining the properties of the system at the inversion, are
unessential. In this area translation symmetry leading to the infinite
motion, i.e. periodic recurrence plays essential role.

As follows from rclations (65) two states 3, , degenerated with
respect to the cnergy, correspond to the same eigenvalues of the
operator T,. It means, state 3, degenerate with respect to the
energy, simultaneously are degenerated with respect to the transition
symmetry. The same can be said for the states with odd index Wi -

From relations (64), (65) follows, that at transition from area G in
arca G_ the destruction of two integrals of motion (I, and Z,/, (64))
happens, thus maintaining others two - energy and T (65).

Tn degenerate areaG,, (Fig.3), in which the states are characterized
by wave functions Ef and & (50), the operators of the symmetry
produce transformations

T =& 1oGomat =Cmats

(66)
QUSHELS I e AREE 6 A
LB =8> Lnialiim = G- 67

In compliance with relations (67) for the two states &3,,, degenerate
with respect to the energy, correspond the same cigenvalues of the
operator I, . Therefore states &, degencrated with respect to the
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cnergy simultancously are degenerated with respect to the operation of
inversion concerning the center of the hole. The same must be said
with regard to other pair of states - G4

From relations (66) and (67) also follows, that at transition from
the arca G into the area G, the destruction of two integrals of motion
(I, and. T, (66)) happens, maintaining thus other two - energy and
1., (67). Similar relations for ¢ for brevity we shall not write out. It
can be checked, that everything mentioned for the wave functions &5
is valid also for the functions G .

It is clear from relations (66), that the wave functions &; are not

cigenfunctions for the operators I and T, . The functions & are the
eigenfunctions for the operator of inversion with respect of symmetry
axis of the potential well - T/, (Fig.1.). This result can be understood
by assuming that the degenerate area G, (E <L, </), corresponds to
the oscillatory motion made by the particle captured in the potential
well. Because the action of operators I, and T, transfers the particle
to the other “potential wells” (i.c. hinders the capture in one of the
holes), properties of the system determined by them i the case of
oscillatory motion will be inessential. The main role in the area G,

takes the symmetry relatively to the center of the hole 7, , describing
evenness of the oscillatory states.

Let us proceed to the computation of some important physical
quantities characterizing system. Our interest will be fixed on the
computation of the average value of the action variation A/ and its
square (AZ)? -

2
;P\», <(Al)’>=—hT.<\y

%i‘l», (68)

% o
- <ylaly>= 2 V@AY (@de.
443 0
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The averaged values calculated with the help of different wave
functions of the system, in different areas of the planc (E,/), naturally
will be different, Let us begin from the case of the free rotation (/=0).
With the help of the wave functions (21) we shall obtain

(69)

Two signs in (69) correspond to rotation in two opposite directions.
The wave functions ;, arc the cigenfunctions at the same time for

[ .
the Hamiltonian (16) and for the operator 6le Thercfore for these
states the cigenvalues and the average values coincide. For the
2 o2
computation of average values of the operator w is suffices

expression (69) raise to the square.
For arca G_ the wave functions can be written down in the form of

(26). In this area % does ot commite with the Hamiltonian (7) and
the appropriate value is not precisely measurable. For the average
el e ool o7 orawe Fonctions!(26) e cxpansion ol

in the Fourier seties (35), (36) we shall get

*
<Van41

%]‘l’im S=FAZTIgHH (70)

where

ATEBE 3 04 1)- Ay By

=0
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Two signs before the sum in this case correspond to different directions
of rotation too. For the calculation of the average values of 621’_ we
shall take advantage of the energy integral with which it is pus:blc to
produce the replacement ZTZI — ~(Eq~lcos2¢). In view of it we
shall get:

P

o Winn >=~Eq+Vay @

<Y2na

Substituting in (71) results of the previous evaluations for the YV,
(38), we shall obtain:

[Azml +§2ml] o @)

As was expected, the square of the average (70) does not coincide with
the average of square value (72).

Let us calculate average values: of quantities' for the ‘states of
nondegenerate area G. With the help of wave functions (13) we obtain:

) i o
<¥m '% Vi >=— [ V(95 ¥ (91 =0, 13
0

Having taken advantage of the energy integral (7) for computation of
o 2
the average value of % for the system in the state Vopi=

=5€pm41(9), We shall get:

<se &
2041 [ =7
O
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3 1% 5
Seann >=—E 0t [ 563 cos2odp=
0




And at last, with the help of the state &5 of the degenerated area G,S
for average values we shall obtain

20 g
<& !aplgz»o; 5)
and

% 1’
K >=-E, £ [6@] cos2ede=

o v
oAb+ A 4By ] 9)

With the help of expressions (68) and the results obtained in this secti-
on (69-76), it is possible to make the table of the average values vari-
ations of the action and its square with the increase of /.

Table 5. Some average values of variation of the action and its square
for the states corresponding to the different areas of the plane (E,/)

1<<Ey
1<I<By L<l<l Eg <l <!
1=0 Go G @
<AT>, | B R 2ntigan+]
u | #50 | £5ATYE 0 0

A £n2 P e I Ry G o
4 2 4 4 2

On the basis of Table 5 possible to infer, that deviation of the
action Al can be measured precisely only at /=0; Only for this
column are satisfied the' condition <AI'>2=<(AI)? >, . In the arcas
G,, G and G_, <AI'>? is the quantum mechanical average of the
random value, the root-mean-square deviation from the average value
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of which is determined by the <(AZ)? >, . The distribution of values is
due to the fact that in these areas the system is not in the cigenstate of
the operator A7 ~ /0

With the growth of the / the diminution of the magnitude <A7 >,
up to zero happens. The column G is the transitive between G and

G,. In it essential in the column G_ contribution from

Cepmar ~ A2 in <(AI)? >, disappears, and the contribution from

ey ~ ~ (A2 +A?) inthe column G, becomes important

§ 6. QUANTUM ANALOG OF THE STOCHASTIC LAYER

For Hamiltonian systems making finite motion, by minimum mesh
of phase-space, which carries in itself the germ of the stochasticity, is
the stochastic stratum generated in the neighbourhood of the separatrix
under the action of arbitrary small perturbation [1]. In this paragraph
we shall try to find out, what can be considered as a quantum analog of
the stochastic stratum. Studying perturbed state of stationary states of
the Mathicu-Schrodinger, we shall look for those quantum
singularities, which occur instead of the stochastic layer at transition
from the classical to the quantum reviewing .

Let us assume that pumping amplitude is modulamd by the slow
variable electromagnetic field. The influence of modulation is possible
to take into account by means of such replacement in the equation of
the Mathieu-Schrodinger (9)

I—>ly+Al cosvt Al <ly an
Here Al stands for the amplitude of modulation in dimensionless unit
(see (10)); v is the frequency of modulation: We suppose, that the

slow variation of / can embrace some quantity of the branching points
on the left and on the right of separatrix line (Figs:2,3)

(78)
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As a result of replacement (77) in the Hamiltonian (7), we get
A=A, +H(), (79)
H'(t) = Alcos2¢ cosvt, (80)

where H, is the universal Hamiltonian (7) and F'(t) is the
appearing as a of pumping
Tt is casy to sce, that the matrix elements of perturbation (80) HI(t)
for nondegenerate states equal zero. Really, having applied expansion
formulas of the Mathieu functions in the Fourier series (35), (36) it is
possible to show

20
<ot [ (O]se, >~ | oo, (@)cos 2gse, (@)dp=0  (81)
o

simultancously for the even and odd n. The expressions of the selection
rules (81) will be fulfilled for values  from the arca [” </ </}

Transitions between levels cannot be conditioned by time-
dependent perturbation (80). It is expedient to include perturbation in
the d part of the i The iltonian, obtained in
such way, is slowly depending on the parameter /. So, instead of (79)
and (80) for the nondegencrated area G we get the Hamiltonian in the.
form

+I(t)cos2¢ , (82)

I(t) =1y +Alcosvt . 83)

Springs up the situation, when the system slowly “creeps” along the.
Mathicu-characteristics, thus enveloping, (78), branching point /2 and
12 from the left, and on the right of the separatrix line.

At the transition through the branching point from one area to the
other area the wave function is not altered, however being
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cigenfunction in one area, in other area it won’t be eigenfunction: any
more. Transition probabilities of the systcm in the eigenstate of another
area, in compliance with the common rules of the quantum mechanics
are determined by coefficicnts of expansion of the wave function of
one area over the eigenfunctions of another area.

Let us assume at the beginning that, the system was in onc of the
eigenstates from the nondegenerate arca G, for example in the state

cop, (Fig.5). After a quarter of the period of modulation % 25
7

having overcome the point /”, system will appear in the degcnerated
area G_. At the same time system turns into the degenerated states

W, with the cqual probabilities

P(cezy = V3)

©

2n 2
[ ez (@ \.r;;((,,)da,‘ =
o

27 2
el C°2n(‘0)(°°zn(‘4’)i‘is‘cz“(@)'dw{ Sz @
0

When deriving (84) we used the'normalization condition of *(12) and
orthogonality (5]

2
[ cer(@kern(@do=0, Lk=0,1 2.... (85)
’

The passage (84) contains a deep physical sensc. As is known, in
the quantum mechanics symmetry, with respect to the both dircctions
of time s expressed in the invariance of the wave equation with respect
to the variation of siga-of time- 7. and simultancous replacement of Y
" . However it is necessary to remember that this symmetry concerns
only the equations, but not the. concept of 2 measurement playing
fundamental role in the quantum mechanics [7,10]. “Measurement” is

understood as process of mwrachon of the quantum system with the
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classical object usually called “instrument”. Let us remind, under the"
measuring arrangement, consisting from the analyzer and detector one
must not imagine laboratorial instrument. The analyzer is presented in
our problem in itself and becomes apparent at the passage through the
branching point. So, the role of the analyzer in our case plays
modulating field, capable to “drag” the system through the branching
points. The presence of the analyzer becomes apparent because in the
passage happens spectral expansion of the initial wave function
belonging to the region of one symmetry over the eigenfunctions
belonging to the region of another symmetry. The presence of only
analyzer reserves a pure state pure, and the process remains reversible.
However, further we shall assume presence of the detector, defining
which of the states y; or w; is involved in passage. The presence of
the detector formally is expressed in averaging with respect to phase
and in neglect of interference term appearing usually in expression for
a distribution function. As a result the partial loss of information about
the condition of the system takes place and mixed state is generated.
After that the condition of the system is described by the population of
energy levels.

As is follows from (84), after the quarter period degenerated rotary

states 3, and v, will be occupicd with the identical probability.

ARer the half period % 2% the system again appears in the area G
&

going through the branching point /* in the reverse direction. At the
same time there appear probabilitics of the transition into the states
gy , 8¢9, and both of them are distinct from zero

2n 2
(VA _’C‘m)=%’% [(CROESNO) cc,mm’t -
i

P(y, ~>562,)

2 2
2 cenn(@isen () seh(w)dw‘ )
0
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Here we have used normalization (12) and orthogonality relations (85).
It is easy to write transition probability from_ ce,, into one of the

degonerated states 3, and back into co,

P_(cegn > Ge,) = P (6820 = Wi = Can)

= P(cegn = W3n)P(W3n = Ce2q) +P(cC3, = W30)P(W3, —>cez,) (88)

Here the first item corresponds to the passage through the degencrated
state w3, and the second one to the passage through iz, . It is easy to
seo with the help of previous computations ((84), (86), (87), that
contribution of their passages arc identical and scparately cqual 1/4
Thercfore finally we have

P_(ceq ©>Ce,) (89)

Similarly it may be shown that transition probability from the state
cey, in one of the degenerated states i, and back in the arca G, in
state se,, by means of going through the point /* is

P_ (G5 €555) =P(030 = W3n)P(V30 =:5¢20) +

2 5 1
+P(cozn = Wan) P(Way = 502,) = 90)

Thus, the system being at the initial moment in the eigenstate ce,;, at
the end of half period of modulation appears in the non-eigenstate in

one of the 15, = ‘/_(cei,, &5¢,,) (in which namely, the information is

lost) and the states ce,, and se,, will be occupied with the identical

probahlhty
After the expiration of quarter of cycle the system will pass from

the area G (the state ") in the area G, going through the point /2.
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In passages from thc area G, four states take part

8= 75 o Hisez) and ﬁén,.:—}i(wmmseh) So, with

taking into consideration the above mentioned for the probabilities of
transitions we get

2 2
PO, &) =[— [ M (@) é%.',(w)dw‘ =
0

s
=1 (0o (0) 502, (9) (o0, (0 Fisonn (94 oy
b
Pl - i) =
| : 1
=5 J (a0 (@) +se2, () ’(cez,...(w)?-:scz,.((p))do‘=7 (92)
M 4

For the deriving of the last expressions in addition to the conditions of
normalization we have used the conditions of orthogonality [S]:

2 2
[ o (PKern(@dQ= [ seo (Pt (@dp=0 m#n. (93)
0 0

On the assumption of (91) and (92) we conclude, that after the time
%2—‘:' system will be in the area G, in one of four oscillatory states
&, and €5, with the identical probability cqual to 1/4.

After one cycle ZTn the system gets back in the area G, from which

it started transition from the level ce,;, . At returning, four levels ce,y ,
Sepn, Cogny and s65,,1 will be involved. Caloulating probabilities of
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passages from the oscillatory state of the arca G, to these four levels
we shall obtain

P(E5, = cezq) = P, = seqn) =112, ©4)
P(E3,0 > 500) = P(C3y = se301) =1/2: ©3)
The probability of passages from the nondegencrated area to the area
G, in onc of the oscillatory states &3, , &3, and back in the arca G

will be:

P, (10 © 5624) = P(aq —>E3,)P (€50 > sC3041) +

+P(Mzn = §20)P (20 > 50200) =

Similarly it is possible to show

P, (Mg © ¢83,) = Pe (Mg = 5625) = Bu(n, = oo ) =1/4. (97)

2r
Thus, after the lapse of time —— four levels of the nondégencrate arca
v
G will be occupied with. the identical probabilities 1/4 (Fig.5)
Moving of the system upwards on energy.terms will be ceased at
the reaching the level, for which the of the branching points in Fig.4
ae on the distance, at which the condition (78) [N ~18[> A is ot

valid. Moving of the system downwards will be stopped at the reaching
of the zero level. In case of assuming, the system being at the initial
moment in the state 2n = N/2, then after of N/8 cycles of modulation

ZL Al N levels will be occupied with the probabilities 1/N. The
possllnlny of such consideration at was ﬁrs! shown in [11].
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§ 7. CONCLUSIONS

Quantum i of the universal

(the mathematical pendulum) give cvidences the presence of three
difforent arcas G,, G. and G discriminated by the quantum
properties on the plane of (E /). The motion in the arca of the

degencrated states G_, is the quantum analog of the rotary motion of
the mathematical pendulum, while the motion in the area of the
degenerated states G, is the analog of the oscillatory motion of the
pendulum. The area G, located between G_ and G, ties two areas,
together ensuring the possibility of the passage between them. The arca
G. dividing two different types can be considered as quantum analog of
the separatrix.

The main singularity of the universal Hamiltonian originating at
quantum mechanical reviewing consists in the specific character of the
dependence of energy terms /. The special alternation of interflowing
of different pairs of terms on the left and right side from the separatrix
line presented in Figures 3, 4 and 5, ensures diffusion of cnergy levels
population with respect to the different energy terms.
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COMPUTER PROCESSING OF THE EXPERIMENTAL DATA
‘OF DEPENDENCE OF DAMPING OF OSCILLATING DISK IN
THE ROTATING He I ON VELOCITY

G. Gujabidze, M. Todua
Accepted for publication July, 2003

ABSTRACT. On the basis of the known experimental data we
have studied the dependence of damping of small oscillation of
disk on velocity in rotating * classical liquid (helium I). The
experiment was carried out lm the different angular o, velocity at
temperature T = (2.215+2.340)°K.

The small oscillations of a disk, suspended in rotating classical
liquids were % and S
Matinyan [1]. The experimental proof of this theory in classical liquid
(distilled water) of Toom tempenmxc was realized by K.Mcsoed and
J. Tsakadze [2].

00 peaience ot Gonilafons oaniouhgof o S oh elosity i
low: temperature classical liquid (rotating helium I) was 'studied at the
Laboratory of Low Temperatures ‘ Physics' of the Tbilisi State
University by G.Gujabidze and J.Tsakadze. under the leadership of
academician  E.Andronikashvili. The ‘results of their experiment are
presented here for the first time.

The oscillating system represented a disk of simall size suspended
on the  elastic: fiber. It fulfilled rotation " Simultaneously, ' with
surrounding liquid- and small rotary ‘oscillations round the fiber.
Logarithmic decrement of oscillations ‘damping Was' measured using
chronometrical; method developed by Andronikashvili, Mamaladze
and Tsakadze [3]:

This method is based: outhc dcpcndmw of  amplitude on the'time
needed . for the, light. spot- which is reflected ‘from & stall mirror
fastened on the pendant of oscillating disk to move between two fixed
points: special electronic scheme measures the time interval, during
which the light spot passes the distance between two photomultipliers.

According to the theory of this method this time interval increases
the damping oscillation of the disk by the law :
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3
Int, =ln7 +— T
g, =l + 20 ()

8
if T,<<—; here n is the number of oscillations; 7 and 7 are the
P

fist and nth  time of the movement of light spot between
photomultipliers, & logarithmic decrement of damping; 6 denotes
period of the oscillation.

Thus, according to this theory, at graphical treatment of
experimental data (immediately measured values of 7,) logarithmic
decrement of the damping is determined as double angular cocfficient
of straight In7,=f{) line.

The experiment was realized by the rough heavy disk, had period
of oscillation 8; = 17.36 sec in rotary velocity (0+120) sec” and
temperature (2,215 + 2,235 )°K intervals.

One part of thesc data, relating to the rotating He I at temperature.
T=2,215°K, G.Gujabidze and M.Todua processed by computer using
program Origin Pro 6.1 in 2002 and the obtained results were
published in 2003 [4].

Computer processing of the second part of named data was
continued and results are shown in Fig.1, where continuous line
represents the theoretical curve, constructed on the ground of the
formula Yu. Mamaladze and S Matinian [1]:

e
ollps God TR L
o

Here R and d are radius and thickness of the disk; €, 8, and @, 8
denote  frequency and logarithmic  decrement  of damping,
correspondingly in liquid and vacuum; v is viscousity coefficient of
liquid.
The experimental points are labelled by the different symbols
to the various of the He 1 in the above -
mentioned interval. The crror of the computer processing is
+0.01-107%.




A :

oxi0’sec’

Fig.1. Dependence of logarithmic decrement of damping on rotation
velocity for He I at 0=1736 wm™ (R=1,5cm ; d = 0,1cm)
T=2215°K, » — T=2,245°K, A - T=2,280°K, ¥ — T=2315°K,
+—T=2335°K.

As can be seen the experimental data of the dependence of
oscillation damping on velocity in the rotating He I at the different
temperature are in good agreement with the results of theoretical study
of analogical question in rotating classical liquid [1].
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MODIFIED HYPERSPHERICAL FUNCTION METHOD FOR
3 PARTICLES SYSTEM IN 2D SPACE WITH INVERSE
SQUARE POTENTIAL BETWEEN PARTICLES
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ABSTRACT. The present investigation reports, that modified
hyperspherical function method permits us to advance compa-
ratively simple and nonmodel representation of the solution of three
particles problem in 2D ‘space for inverse square of pair interaction.
This becomes possible due to the correlation function along with the
effective potential there appears r'' potential, leading the ground-
state energy to the finite quantity. In a first approximation the
problem is decided analytically.

Numerous physical phenomena may be described by singular
potentials [1]. Inverse square potential is more interesting, especially in
polymers [2], and in the interaction between Rydberg atom and polar

molecule [3]. The problem of threc particlcs by pair interaction of -5
r

type in 1D space in a field harmonic oscillator has been worked out
analytically [4]. The problem of three particles for pair inverse square
interaction in 3D space has been studied [S], the same system in 2D
space is considered in the present paper.
Schrodinger equation in a system of center of masses for three
identical and ivistic particles in i i
in 2D space are defined in [6]. When we solve Schrodinger equation we
get coupled differential equations system for hyperradial function. We
consider only one equation from this system, when K = K' (K is
hypermoment of  the particles). As a result the following equation have
been gotten:

25

]]WK(P)= —i%lmcp) o)
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where: o
T = [ O Qg (Q)(cosw)2d2 @

and %? = —24iE ; () is cigenfunction of the generalized angular-
momentum operator which analytical form is known [6],

(@) =C,cosasina PH(cos® o)) @)
where:

K o _[202.n)00 0+ 20) 2
LSl L ) )
T+ mT(+n)
Q=(0,%,7)denotes five angles, p and o arc defined by the
exprossion: p?=x?+y% Xand § are the Jacoby coordinates;
R|=peosa; |§|=psing; (0<p<e; 0 <a, <§). E <0is a binding

energy for three particles; . is a reduced mass. The integral (2) can
be calculated analytically [6] and it is equal to

2
[[“”}["”H 3(3, K—2k+ljx
k Jk+1)] \2
r(K+2)
*TQk+DI(K—2k+2)

n

gnm;

Iy = 27
(m; +mj)p

@

Simple analysis shows that under these conditions the ground state
encrgy has infinitely large negative value and therefore there is nosense
to solve it. To avoid this we use modified hyperspherical function
‘method (MHEM) (7).

The main idea of the MHEM is that wave function ‘¥' represents
the product of two functions, where the first is the main hyperspherical
function and the second is the correlation function-¢ = cxp(£) , defined
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by singularity and clustering propertics of the wave function and it is
equal to,

®)

where 1, is a distance between the particles and 7, is determincd
according to physical considerations.

Taking into account the rclation between threc different sets of
Jacobi coordinates (8], the cxpression (5) can be prosented as:

s
311 =p(Gy cosa+Gysina), )
b=

where:

Gii=11 +72005(bz5 +631) =13 088315
Gy =7, sinzs +b31) = vssins;

If we substitute expression (5°) into (1), and carry out some
transformations, hyperradial differential equation is obtained but we
consider only one equation when K = K’

w') 0, W+ Wy
(73 [

(x +w') 2pK(K+2)+JJ ()= ®

where:

A 120461 %
W62 J— W=

2ol
11623

W 21E 250,16,




Taking into account the asymptotic behavior of the equation (6), let
us seck a solution as the following:

w(p) =exp(-8p)p°0(p) ©)
where
7 )
W -4k +Wg)-W;
R E —

Substituting expression (7) into cquation (6), then for ¢(p) we
obtain the equation of hypergeometrical function:

0 (3W+W;-3)
e Ll S =0
o ey T O ()

(-r+20+3)

where: r=(28+W3)p

If we take into account that three body system is binded then
solution of the (8) equation is represented as the following type of
hypergeometrical function:

#(p) =CiFGa,b.1) ©
3W; +W; - 38
where:  b=20+3; azw N=12
26+ W,
For binding energy we received

2| (12W; +4W; - Wy 3+20—2N) )
3+20-2N
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The dependence of binding cnergy of three body system ol the
global quantum number N obtained as a solution ‘results in the
expression (10) that is given in the Table.

Table. Dependence of the binding energy of the three body system in
2D space upon the global quantum number N

‘ Global quantum | Binding cnergy
number N CEl@u) it -
T T 0.114174
: S D
0005838 |
0.001928

0.001256 ‘l
10.001143

(In these results we assume that correlation parameters and
interaction constant are the same for all particles. Their variation
doesn’t give any qualitatively new results).

Thus MHFM permits us to advance comparatively simple and
nonmodel representation of the solution of three particles problem in
2D space for inverse square of pair intcraction. This is possible duc to
the correlation function together with cffective potential appears to be
& potential, leading the ground-state energy to finite quantity. In a
T

first approximation the problem is decided analytically.
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